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An Empirical Investigation into Programming Language Syntax
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Recent studies in the literature have shown that syntax remains a significant barrier to novice computer
science students in the field. While this syntax barrier is known to exist, whether and how it varies across
programming languages has not been carefully investigated. For this article, we conducted four empirical
studies on programming language syntax as part of a larger analysis into the, so called, programming
language wars. We first present two surveys conducted with students on the intuitiveness of syntax, which
we used to garner formative clues on what words and symbols might be easy for novices to understand. We
followed up with two studies on the accuracy rates of novices using a total of six programming languages:
Ruby, Java, Perl, Python, Randomo, and Quorum. Randomo was designed by randomly choosing some
keywords from the ASCII table (a metaphorical placebo). To our surprise, we found that languages using a
more traditional C-style syntax (both Perl and Java) did not afford accuracy rates significantly higher than
a language with randomly generated keywords, but that languages which deviate (Quorum, Python, and
Ruby) did. These results, including the specifics of syntax that are particularly problematic for novices, may
help teachers of introductory programming courses in choosing appropriate first languages and in helping
students to overcome the challenges they face with syntax.
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1. INTRODUCTION

Despite decades of study, what makes a computer programming language easy to
use for people of all skill levels remains elusive. While why is a subject of debate, a
considerable number of programming languages are in common use in industry and
the classroom. Many of these modern programming languages hold to a particular
tradition (e.g., C or Lisp style syntax), and it is common for designers to vary syntax,
semantics, or library design. These subtle variations on a syntactic theme are typically
chosen by committees or technical experts.

One obvious reason why so many languages exist is that it is difficult to decide how
to evaluate programming languages, let alone which people to evaluate. From our per-
spective, one community that stands to benefit most from controlled experiments on
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19:2 A. Stefik et al.

programming language design is students. Given the documented attrition rates in in-
troductory programming courses [Beaubouef and Mason 2005], it seems reasonable to
assert that novices face significant challenges when initially confronted with a general
purpose programming language. Further, since novices must become comfortable with
syntax in order to use a general purpose programming language, trying to identify
where syntactic barriers exist may benefit instructors teaching various technologies.
If the barriers can be identified in a specific enough way (e.g., which tokens, words, or
symbols should be altered?) this may also benefit students in the long run as program-
ming languages evolve.

Before we continue, however, we want to acknowledge what should be obvious
to most reasonable instructors or computer scientists: in regards to the language
wars, syntax is only one piece of an extraordinary puzzle. Many factors impact
human performance in programming languages; our focus here is to isolate one
feature that might impact students and to study it carefully using empirical methods.
With that said, we think there are several compelling reasons why the study of
syntax should not be ignored. First, Denny et al. [2011] conducted a recent empirical
study showing that programming language syntax in Java remains a major barrier
to students. In an experiment involving 330 students, Denny et al. found that
students in the top quartile submitted non-compiling source code approximately
half the time, whereas those in the bottom quartile submitted non-compiling code
73% of the time. The broad message of Denny et al.’s work is that even excellent
students in an introductory programming course experience syntax issues. Later
work has shown that syntax errors vary in how difficult they are for novices to solve
[Denny et al. 2012].

Second, we have conducted a significant amount of previous work on tools for the
blind and visually impaired. In that work, we observed that some programming lan-
guages were harder than others to “read” with a screen reader when used by a blind
student [Stefik et al. 2011a]. When we considered the issue of syntax more deeply for
our unique set of students, we thought it plausible that some languages chose words
or symbols that were either unintuitive or seemingly arbitrary (e.g., ++ to increment
the value of a variable, use of the word “for” to represent iteration, || to supposedly
mean “or”). Given that we also have taught undergraduates in the classroom, we are
suspicious that many syntactic choices in traditional C-style syntax (e.g., for loops,
conditionals) may be hard for novices to understand or use. As some new languages,
like Python, Ruby, or Quorum, have begun to abandon elements of C-style syntax, it
seems reasonable to evaluate the impact of these choices on novices.

One might ask, however, whether a study of general purpose programming language
syntax is worthwhile at all, given innovations by those developing syntax directed
editors [Teitelbaum and Reps 1981], or more modern tools like Alice [Cooper 2010;
Pausch 2008], Scratch [Maloney et al. 2010; Resnick et al. 2009], or perhaps end-user
programming systems [Ko et al. 2011]. In this regard, it is crucial to recognize that
visual tools do help novices initially (although not for the blind), especially in promot-
ing transfer-of-learning from visual systems to text-based programming languages.
This has been confirmed independently and using different methodologies with at
least the tool ALVIS [Hundhausen et al. 2009] and Alice [Dann et al. 2012]. However,
visual tools are not a silver bullet. Garlick and Cankaya compared using Alice in an
introductory course to a control group that started with pseudo code, finding that the
Alice group had a statistically significant drop in grades [Garlick and Cankaya 2010];
a very different kind of study with a very different outcome from the one discussed
by Dann et al. [2012]. Regardless of the ongoing debate, despite decades of study on
tools designed to bypass syntax, general-purpose programming languages are still
overwhelmingly used in the classroom. Given that our goal as instructors is often
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An Empirical Investigation into Programming Language Syntax 19:3

to prepare students for industry, which also overwhelmingly uses general-purpose
programming languages, evaluating the impact of syntax on novices seems reasonable.

Given these considerations, we investigated programming language syntax in detail,
with an eye toward evaluating competing designs with novice students. We limit our
exploration to the following two research questions: (RQ1) Which words and symbols
do novices find intuitive (or not intuitive) in a general purpose programming language,
and (RQ2) Can novices using programming languages for the first time write simple
computer programs more accurately using alternative programming languages? To
analyze these broad research questions, we present here four formal empirical stud-
ies that we hope will help inform the debate for instructors, students, and language
designers.

In the first two empirical studies, we explore how novices rated the intuitiveness of
various programming language constructs. To obtain a reasonable sample of novices,
we tested both those just beginning their academic career and those with more expe-
rience. This first study partially replicates, but greatly expands upon, previous work
[Stefik and Gellenbeck 2011]. In a second study, we asked novices to subjectively rate
the intuitiveness of larger program constructs in nine programming languages, includ-
ing C++, Java, Smalltalk, PHP, Perl, Ruby, Go, Python, and Quorum. The purpose of
these studies is to provide clues to instructors and language designers as to the kind
of words, symbols, and phrases that may or may not make sense to a novice.

We explored our second research question by conducting two additional empirical
studies, expanding on previous work [Stefik et al. 2011c]. In all, we had novices pro-
gram using the languages Ruby, Java, Perl, Python, Randomo, and Quorum. For both
works, we included the programming language Randomo, which was generated by
starting syntactically with Quorum and then replacing the keywords with randomly
chosen values from the ASCII table. Following a long history of using randomized
controlled trials in the bio-medical sciences [Kaptchuk 1998], we hypothesize that
languages such as Randomo may be useful to other researchers as a form of control
group in programming language design studies. Generally, it seems reasonable to ex-
pect that novices using commercial programming languages would be afforded signif-
icantly higher accuracy rates than those using a language we created with a random
number generator.

The overall findings from our experiments show evidence for the following key point:
variations in programming language syntax matter for novices. More specifically, our
data shows evidence that (1) some syntactic choices made in commercial programming
languages are more intuitive than others, (2) variations in syntax influence novice
accuracy rates when starting to program, and (3) using randomized controlled trials
with placebo, and surveys, we can identify which features of syntax may cause the
problems we observe with novices. These observations may be useful to instructors
or language designers who need to evaluate which aspects of syntax novices might
initially struggle with.

In the course of this article, we will first discuss related work. Then, we will move
to the details of our formative surveys. We then discuss our final two experiments
on novice accuracy rates, conduct a general discussion, examine broader threats to
validity, summarize our overall findings, and conclude.

2. RELATED WORK

As programming itself is such a significant component of what computer scientists do,
its study in the literature is only natural and has a rich history. We want to be clear in
saying that a complete review of the usability of programming languages, let alone the
rich history of argument, is outside the scope of this article. Our goal in this section
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19:4 A. Stefik et al.

is to focus on the broad historical themes we have seen in regards to programming
languages, especially their use by novices.

One important research line has been in evaluating the programming practices
of novices or trying to make programming seem more natural [Bonar and Soloway
1983; Holmboe 2005; Lister et al. 2004; Lopes et al. 2003; Myers et al. 2008; Schulte
and Magenheim 2005; Soloway et al. 1983]. See Kelleher and Pausch [2005] for a
comprehensive review of novice programming systems or Ko et al. [2011] for a similar
work with end users. With some similarities, the broad psychology of programmers is
well studied. Some of the major areas of research have been general comprehension
[Pennington 1987b], comprehension in industry relevant conditions (e.g., large scale
maintenance [Mayrhauser and Vans 1997]), in regard to issues such as concept
retrieval [Cleary et al. 2009], and work on the comprehension of auditory cues for
the blind [Stefik 2008]. A number of authors have also established that programming
language usage impacts productivity in either industry or the open-source community
[Comstock et al. 2007; Delorey et al. 2007]. Other topics are studied by the Psychology
of Programmers Interest Group (PPIG).

Besides analysis with novices, visualization has garnered significant interest in the
literature [Dann et al. 2012; Hundhausen et al. 2009; Ko and Myers 2009; Garlick and
Cankaya 2010]. Other researchers have examined sonification [Bigham et al. 2008;
Sánchez and Aguayo 2005; Smith et al. 2004; Stefik et al. 2007; Vickers and Alty 2002],
multimedia techniques [Brown and Hershberger 1991; Stefik and Gellenbeck 2009], or
programming by voice [Begel and Graham 2004]. Researchers often create tools that
surround a programming language, or altogether replace it, and look at the impact
on users. Generally, a wide variety of tools (e.g., omniscient debuggers [Ko and Myers
2009; Lewis and Ducassé 2003; Pothier et al. 2007]) have been shown to be helpful to
programmers (novice or otherwise) [Myers et al. 2004, 2008].

It is also important to acknowledge that human language is well studied in the area
of psychology, for example, in the work of Pinker [1991] or as described in Whitney’s
textbook [Whitney 1998]. In terms of programming language usability, a wide vari-
ety of topics have been studied, such as the use of identifiers [Deißenböck and Pizka
2005], method naming [Høst 2007; Høst and Østvold 2007], coding standards [Binkley
et al. 2009], or API designs [Stylos and Myers 2008]. The learnability of programming
languages (e.g., Logo [Lukas 1972], Scheme [Findler et al. 2002], Smalltalk [Borning
and O’Shea 1987]), the usability of a language [McIver 2001; Pane et al. 2001], or the
relationship between programming and natural language [Delorey et al. 2009] have
also been investigated.

While the previous few paragraphs provide a bird’s-eye view of some of the literature
in the area, we want to highlight several articles that we consider to be particularly rel-
evant to the current work. For example, McIver focused her research on the program-
ming language GRAIL in usability studies, making specific predictions about what
kind of syntax and semantics would be sensible [McIver 2001]. The low-level thinking
on specific constructs used in GRAIL, or in the work of Pane et al. [2001], influenced
the analysis techniques used in the Quorum programming language. Further, in terms
of the Pane study, while the work here cannot directly confirm or deny the hypothe-
ses presented in that work, the use of study techniques such as Artifact Encoding and
Token Accuracy Maps may allow future researchers to re-test such hypotheses in the
context of general purpose languages, as opposed to the visual matching tasks these
authors used.

Other language designers have also worked toward making languages that are in-
tuitive or easy to use. For example, Holt et al. created the teaching programming lan-
guages SP/k [Holt et al. 1977] and Turing [Holt and Cordy 1988]. Smalltalk is also
believed to have been adjusted according to usability evidence, however, the literature
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An Empirical Investigation into Programming Language Syntax 19:5

discussing this largely just states that evidence was gathered, but does not go into
detail about what that evidence was [Borning and O’Shea 1987]. Similarly, in the late
80’s and early 90’s, many researchers focused on analyzing either the comprehension of
languages [Pennington 1987a] or qualitative analysis of a specific language (see Taylor
[1990] for one of many examples). For a systematic review of such systems, see recent
review articles [Kelleher and Pausch 2005; Ko et al. 2011].

A great deal of evidence on programming language usability can be found in the Psy-
chology of Programmers Interest Group (PPIG) or the abandoned Workshop on Empir-
ical Studies of Programmers (ESP). While a complete history of these two workshops
is beyond our scope, much of the work from these workshops focused on understanding
programmers. For example, Ramalingam and Wiedenbeck [1997] show an excellent
quantitative experiment comparing comprehension with imperative and object-
oriented styles. This study shows that language notations do influence novices, and,
hypothetically, language designers can exploit some of these findings to improve their
languages. In Quorum for example, as in many modern languages, object-orientation
is hidden from beginners as optional syntax, taking advantage of this finding.

Much of the work prior to the mid-1990’s eventually culminated into the cognitive
dimensions framework by Green and Petre, later cited and expanded upon by a wide
array of authors [Green and Petre 1996]. This model has been highly influential and
has provided a reasonable, experienced, and thorough, set of heuristics. However, while
this article held sway for more than a decade, many modern scholars interested in
programming language usability have, it seems, been less likely to use or cite it. For
example, recent studies have shown quantitative evidence that static typing affords
faster programming times for human users [Kleinschmager et al. 2012; Mayer et al.
2012]. Studies like these often have less of a need for heuristics and more of a need for
the types of randomized controlled trials seen in the bio-medical sciences, which are
better suited for some kinds of very specific research questions (e.g., what is better for
humans, static or dynamic typing?).

In regard to our discussion of the literature, we should point out that a number of
modern authors have been highly critical of the existing literature in language design,
including the cognitive dimensions framework. Perhaps the most consistent complaint
seen in the modern programming languages literature is the lack of randomized con-
trolled trials on programming language design. We sum up these positions by looking
at the claims made by two authors, Markstrum and Hanenberg. First, Markstrum
has looked carefully at the historical literature and his investigation reveals that new
syntax or features are simply added to languages, usually with no data regarding
human users [Markstrum 2010]. Second, Hanenberg argues that the entire discipline
of language usability is based on Faith, Hope, and Love [Hanenberg 2010b]. In other
words, both Hanenberg and Markstrum have documented that the language design
community often does not use evidence at all; relying nearly exclusively on anecdotes.
Evaluating these claims would require a detailed historical treatise and is not in the
scope of our work. If validated, however, these are claims that should not be dismissed
lightly.

While the discussion of historical work on language usability is interesting, the most
recent trend, by far, is that the literature is transforming itself with the use of ran-
domized controlled trials, a tradition our article falls in. While a number of articles
could be cited, the broad lesson from carefully controlled experiments is the follow-
ing: programming language design impacts users [Kleinschmager et al. 2012; Mayer
et al. 2012; Ramalingam and Wiedenbeck 1997; Rossbach et al. 2010]. For example,
Stylos has conducted a number of studies on alternative API designs and their im-
pact on users [Stylos and Clarke 2007; Stylos and Myers 2008] (e.g., Stylos claims
constructors should not require parameters). Evidence in the literature also suggests
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that using locks leads to nearly seven times more bugs for novice students compared
to transactions in parallel processing in the classroom [Rossbach et al. 2010]; an ex-
traordinary finding. Another emerging trend is to consider the sociology of program-
ming languages, especially in regard to adoption, taken on by Meyerovich and Rabkin
[2012].

Finally, a common approach in education is to study language alternatives as they
are used in the field (e.g., the classroom). While this is hardly new, one set of recent
and interesting examples were conducted by Enbody et al., which studied the use of
Python [Enbody and Punch 2010; Enbody et al. 2009]. The broad result showed no
observable benefits for using Python in training students for a CS2 C++ course. While
finding quantitatively reproducible results from field studies like this is difficult due to
the considerable number of potential confounds, we do think that more of this “style”
of work could be of significant value to the literature. For example, if curriculum/ped-
agogy can be partially isolated as an independent variable, variation on languages
themselves might be detectable. If language design ultimately is evaluated in the field,
however, lessons can be learned from Tew and Guzdial’s FCS1 instrument [Tew and
Guzdial 2011]. While not designed for testing the impact of language, this instrument
may be one of the most rigorously evaluated assessment instruments in the educa-
tional computer science literature; the same procedures and techniques used in its
creation could be adopted in studying languages.

Overall, the literature on programming language design is truly rich. We have cited
a wide variety of articles that we feel have either influenced other researchers or that
provide exemplars from various groups (e.g., PPIG). We want to be clear that a com-
plete history of the programming language wars, even if the focus was exclusively on
usability, could easily take up a book-length treatise. We strongly encourage readers
interested in the topic to look at the rich previous work from many of the conferences
and workshops we have mentioned to get a flavor of what exists.

3. STUDIES 1 AND 2: SURVEYS ON PROGRAMMING LANGUAGE SYNTAX

In this section, we present two empirical studies aimed at providing insight into our
first research question.

RQ1. Which words and symbols do novices find intuitive (or not intuitive) in a gen-
eral purpose programming language?

The broad idea in both studies is to give participants English explanations of various
concepts and to ask them to subjectively rate how “intuitive” a series of word or syntac-
tic choices relates to those concepts are. As the current article expands on a previously
published pilot study (see Study 2 in Stefik and Gellenbeck [2011]), we contribute in
Studies 1 and 2 in the following ways: we have added (1) a significantly larger num-
ber of computer science concepts, (2) all results presented here were conducted on a
new sample, and (3) Study 2 presents, for the first time, ratings for larger syntactic
constructs in nine programming languages.

3.1. Methodology

As both Studies 1 and 2 hold significant similarities, this section is organized as fol-
lows. First, we will describe the population we drew participants from for both studies.
Next, we will discuss our materials and tasks broadly, then move to results for each
experiment. Finally, we will present a discussion of both studies.

3.1.1. Participants. We solicited 196 participants, summarized in Table I, to take our
surveys from a participant pool consisting of students enrolled in several classes
at Southern Illinois University Edwardsville after appropriate Institutional Review

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 19, Publication date: November 2013.



�

�

�

�

�

�

�

�

An Empirical Investigation into Programming Language Syntax 19:7

Table I.

This table provides an overview of the self-reported experience levels given by participants. #P = number of
participants self-reporting greater than zero years of experience in a particular category (P = Programmer, NP =
Non-Programmer). The languages PHP, Go, and Smalltalk were not included in the survey for study 1.

Study 1 Study 2
#P programmers non-programmers #P programmers non-programmers

Category P NP μ σ μ σ P NP μ σ μ σ

Overall 84 0 2.57 2.47 0.00 0.00 93 0 2.38 2.26 0.00 0.00
C++ 75 13 1.76 1.87 0.18 0.44 80 7 1.66 1.84 0.12 0.40
Java 31 4 0.46 0.71 0.09 0.48 29 2 0.39 0.70 0.03 0.16
Ruby 3 0 0.08 0.44 0.00 0.00 5 0 0.09 0.41 0.00 0.00
Python 7 0 0.11 0.41 0.00 0.00 6 0 0.08 0.34 0.00 0.00
PHP — — — — — — 11 1 0.28 1.06 0.01 0.12
Perl 2 0 0.03 0.22 0.00 0.00 1 0 0.01 0.05 0.00 0.00
Go — — — — — — 1 0 0.01 0.10 0.00 0.00
Smalltalk — — — — — — 1 0 0.18 1.76 0.00 0.00
FORTRAN 1 0 0.02 0.22 0.00 0.00 0 0 0.00 0.00 0.00 0.00
COBOL 3 1 0.05 0.26 0.01 0.11 3 0 0.03 0.18 0.00 0.00
Matlab 11 4 0.14 0.43 0.06 0.29 9 1 0.09 0.31 0.01 0.12
Basic 24 3 0.48 1.22 0.03 0.16 23 1 0.39 1.20 0.01 0.12
C# 12 0 0.22 0.71 0.00 0.00 12 0 0.17 0.63 0.00 0.00
JavaScript 19 1 0.68 1.74 0.05 0.44 22 0 0.67 1.68 0.00 0.00
HTML 40 8 1.62 2.93 0.23 0.86 45 5 1.56 2.79 0.17 0.78

Board ethics reviews for both Studies 1 and 2. Students came from a variety of courses
in the computer science department, including freshman through junior and senior
level courses that are taught in a variety of languages (e.g., C++, Java). For study 1,
166 participants decided to take the survey, giving us a high response rate of 84.7%.
We classed participants according to their self-reported total years of experience into
programmers and non-programmers, where non-programmers were counted as those
reporting zero total years of self-reported experience. Given this grouping, study 1 in-
cluded 84 programmers and 82 non-programmers. Programmers self-reported an av-
erage of 2.57 years of programming experience (SD = 2.47). Of the programmers, 11
were female and 73 were male, while of the non-programmers 17 were female and 65
were male. Participants in Study 1 reported an average age of 21.3 years. Two people
reported being non-native English speakers.

Of the 196 participants solicited, 166 also chose to take Survey 2. Of these individ-
uals, 93 were classed as programmers and 73 were classed as non-programmers. Of
the programmers, 12 were female and 81 were male, whereas for non-programmers,
19 were female and 54 were male. A total of 7 people reported being non-native
English speakers. Participants here also reported an average age of 21.3 years. Some
of the individuals solicited chose to participate in both Study 1 and 2. As we were
concerned this might influence the results, we pilot-tested Study 2 in a previous
semester on a different sample. Further, as already stated, we previously published a
pilot for Study 1 [Stefik and Gellenbeck 2011]. We found that our results here largely
replicate previous work, meaning that participants rate the words/symbols/syntax in
approximately the same way regardless of whether they took one survey or two. As
such, we will not discuss this issue further.

We also classified participants in Study 2 as programmers if they self-reported any
non-zero amount of total programming experience. Whether our measures of experi-
ence, self-reporting, or how individuals are classified, were the most appropriate, is not
clear, but Feigenspan et al. published results from a survey of programming experience
with similarities to ours [Feigenspan et al. 2012]. Our programmers self reported their
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average years of programming experience (M = 2.38, SD = 2.26), along with their ex-
perience in a number of programming languages (see Table I).

While our non-programmers all reported zero years of total experience, we found
that 22 individuals in Study 1 and 13 individuals in Study 2 made contradictory mark-
ings. In these cases, individuals marked that they had never programmed before in
any language, but some had experience programming with an individual language. As
we shall see, we found similarly contradictory markings in study 4, but in that case,
interviews indicated that all participants with contradictory markings had never be-
fore programmed. In Studies 1 and 2, however, our online survey tool automatically
anonymized the data to conform with ethics guidelines, which made such interviews
impossible. Other researchers interested in whether or how contradictory markings
play a role in intuitiveness measures can investigate the issue by analyzing our repli-
cation packet, which is available from the authors.

As a final issue related to our surveys, while versions of our language, Quorum
(previously called Hop [Stefik and Gellenbeck 2011]), are freely available online today,
we did not directly ask individuals to tell us whether they had used it. At the time,
Quorum was not available as a standalone product, so we assumed our participants
would not know about it. With that said, while it is unlikely that any of our partic-
ipants had seen or used an early version of Quorum, in hindsight, we wish we had
asked participants anyway. Finally, in all of our results tables, we use the labels Pro-
grammer and Non-programmer, by which we mean those with no total self-reported
experience and those with greater than zero self-reported total experience.

3.1.2. Materials and Tasks. Participants used LimeSurvey, an open-source online sur-
vey tool, to enter their responses to our questions. After reading the task description,
users subjectively rated words or syntax on a scale from 0 (0% intuitive) to 10 (100%
intuitive). Figure 2 shows the rating interface for entering the values for one of the
loops in Study 2 (Smalltalk, in this case). For Study 1, we focused the concepts we
tested on words commonly used in many programming languages (e.g., for, if, static,
or concatenation characters; i.e., “+ (Java)” or “. (PHP)”). In the second study, we fo-
cused the questions in our survey predominately on loops, if statements, or functions,
because these features are common across many programming languages. Also in the
second study, we allowed users to optionally enter a short explanation of their rating.
We did not grade users’ qualitative answers, but we did collect them to try and gar-
ner some insight into why users responded as they did. As other authors may wish to
rephrase our questions, try new words or symbols, or create variations on our proce-
dures, a complete replication packet, including PDFs, raw anonymized data, and the
source code for our surveys, is available from the authors on request.

Designing robust, neutral, and clear surveys is not easy and we used a highly iter-
ative process in designing ours. First, we designed and analyzed concept descriptions
in small-scale pilots and had them reviewed qualitatively by experts. Second, once
these initial reviews were complete, we submitted for peer review, and published a
large-scale pilot study on an initial version of the survey [Stefik and Gellenbeck 2011].
After publication, we underwent several additional rounds of expert review as we ex-
panded our survey, adjusting questions based on feedback and pilot data. Finally, after
this already extensive approach, we ran several additional small-scale pilot studies to
identify potential problems in the design. While we expect some readers, no matter
how careful we were with the concepts, will disagree with our descriptions, the final
choices made here have been 1) thoroughly vetted by a variety of experts in informal
expert reviews, 2) scrutinized by novices and programmers in pilot studies, and 3) an-
alyzed in formal anonymous peer review at an academic journal. Overall, we think the
care we took in designing our survey is analogous to the level of care put into recent
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educational research tools, such as Tew and Guzdial’s excellent FCS1 instrument [Tew
and Guzdial 2011]. The FCS1 has a very different purpose than our surveys, and Tew
and Guzdial’s procedures for statistical validation differ from those we used in pilot
studies [Stefik and Gellenbeck 2011], but the level of care in design holds similarities.

3.1.3. Procedure. While our electronic survey was public, we tightly controlled access
to prevent cheating or other problems with open online surveys. Participants would
contact one member of our team, who would email a token to them. Participants would
then complete our survey on a machine and browser of their choosing by entering the
token, reading our informed consent form, and answering all of the questions. All data
gathered was anonymized internally by LimeSurvey. Once all of our participants had
completed the survey, we extracted the data from our online database and conducted
statistical analysis in the programming language R.

3.2. Study 1 Results: Words and Symbols

In our first study, the goal was to document how humans subjectively rate the intuitive-
ness of word and symbol choices representing computer programming concepts. As we
stated in previous work, our goal here is to gather formative clues as to what words
and symbols might make sense to students. As should be obvious, we are not claiming
that our survey somehow “proves” that a word or symbol is better than another; our
survey is an investigative tool, not a proof. With that said, it seems reasonable to ask
students what they think about language design choices, especially given how esoteric
these choices sometimes are.

The survey for Study 1 had approximately six areas of exploration: (1) Types and
Operators, (2) Control Flow, (3) Data Structures, (4) Object-Orientated Programming,
(5) Input, Output, and Comments, and (6) Aspect-Oriented Programming. A selection
of task descriptions for several of the questions asked can be found in Table II. In each
subsection, we included a series of potential word or symbol choices regarding these
concepts. Many of the words and symbols came from real programming languages,
although we also included a number of choices that hypothetically could have been
considered for these concepts. While any number of concepts could have been chosen,
we investigated these six areas because, with perhaps the exception of Aspect-Oriented
programming, they are common across programming languages. We decided to include
word choices related to Aspect-Oriented programming both out of intellectual curiosity
and due to the results of Hanenberg et al. [Endrikat and Hanenberg 2011; Hanenberg
et al. 2009].

In terms of our analysis, we now present our results. In each case, the tables present
the raw ratings given by novices. In previous work, we supplemented such figures
with a rigorous statistical procedure, allowing us to rank the words in the aggregate
[Stefik and Gellenbeck 2011]. However, given the size of our new survey in Study 1,
repeating all of the questions and ratings would add considerable length to the current
article. As such, we provide here the three highest-rated choices for each concept and
the three lowest. For those interested in the exact minutia of every word we chose, raw
or summarized data is available on request from the authors.

While we have categorized each question presented here to help give a broad
overview of the themes of our survey, these themes were not presented to participants.
Further, our intent was to understand how participants rated individual words in ag-
gregate, not to detect relationships between our questions in the correlative sense. As
such, a traditional factor analysis [Kline 2002] would not reveal the information we
are trying to catalog and is not included here. Finally, while we have organized our
tables, the questions were given to participants in what is often termed fixed random
order (an order that is fixed ahead of time, but chosen through a random process).
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Table II. Example Task Descriptions

Task Concept Task Description
43: Integer A variable that holds

negative or positive
whole values

Rate the following words on how well they express the idea of a variable
that holds negative or positive values used for expressing non-fractional
amounts, i.e., −5, 15, 0.

30: Assignment
Operator

Assigning a value to a
computer’s memory

Suppose you wanted to write a mathematical expression that represented
taking a number, perhaps the number 1024, and putting it into a location
in a computer’s memory represented by a variable named x. Rate each
construction according to how well you think it represents assigning a
value to a computer’s memory.

6: If Doing something
after verifying that
something is true

Suppose that something happens after verifying that something is true.
For instance, suppose that something will happen after verifying that
something named x is less than something named y. Rate the following on
how well they express that the following code will execute after verifying
that x is less than y.

3: Boolean
Equals

Checking whether
one thing is the same
as another thing

Suppose you wanted to check whether something named x had the same
value as something named y. Rate each expression according to how well
you think it represents checking whether x and y have the same value.

32: Array A variable that
references one or
more values in a row

Suppose you want to use one variable that holds one or more values in
a row. For instance, suppose you have a variable named x that holds the
values 8, 3, 10, and 6, one after the other. Rate the following words on how
well they express that the variable x holds multiple values.

23: Generics Specifying the data
type of an element in a
larger structure

Suppose a program contains a structure called list and you want the
data type of the items in list to be of the type dog. Rate the following
based on how well they express that the data type of the elements in list
is being set to dog.

12: Class Representing
something in the
computer that exists in
the real world

Consider a dog. A dog can bark or run, and it has a height, weight, and
color. We might define instructions for creating a representation of a dog
in the computer. Rate how well each word represents this concept.

17: Method A list of instructions
that represents a
tangible behavior,
(e.g., walking at a
certain speed)

Rate how well each word describes a list of instructions.

4: Public A part of a computer
program that can be
completely accessed
by another program

We often want to make certain parts of a computer program completely
accessible by other parts. Rate each word on how well it represents
making a thing completely accessible.

10: Input Prompting the user
for information

Rate the following words on how well they express that the user is being
prompted to provide the program with some information.

29: Try Attempting to run
code that may not run
correctly

Some code may or may not run correctly because of problems outside of
your control (e.g., the computer cannot find a file). Rate each word on how
well it expresses that you are attempting to run a block of code that may
not run correctly.

20: Pointcut Symbolically
representing various
things in a document
for later reference

Suppose you had a Microsoft Word document where, by mistake, you
accidentally left the headings as paragraph text, but you meant to
make them bold. Pretend that you can use a keyword in a programming
language to indicate where all of the headers are so that later you can do
something with them all at once (e.g., make them all bold). Rate each of
the following words on how well they represent this concept.

22: Before Automatically
executing a list of
instructions when
certain parts of a
program start running

Consider using a program that requires logging in, i.e., an instant messag-
ing client. Whenever you want to access your account, code automatically
runs that ensures that you are logged in. Rate each word based on how
well it expresses that you want code to automatically run when certain
parts of a program start running.

3.2.1. Types and Operators. We asked a number of questions in our survey on concepts
related to static types such as integers, floating point values, booleans, or strings.
Table III shows the results for these questions. For the integer data type, program-
mers rated the word integer highly, while non-programmers rated the words number
and integer as comparably intuitive. Regarding the concept of a floating point num-
ber, both programmers and non-programmers rated the word choices decimal, and
number highly. For boolean types, programmers rated the words boolean and bool well.
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Table III. Word Choice Results for Variable Types. (Word Choices with the Same Average Were
Sorted Alphabetically)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Integer
Non-programmer number (6.63, 2.68), integer (6.46, 3.38),

real (5.91, 3.22)
byte (3.67, 3.09), boolean (3.60, 3.03),
cipher (3.11, 2.82)

Programmer integer (8.38, 2.42), number (6.20, 2.85),
real (5.88, 3.09)

complex (2.76, 3.24), boolean (2.44, 3.11),
cipher (2.44, 2.65)

Float
Non-programmer number (6.70, 3.05), decimal (6.43, 3.31),

rational (6.07, 3.25)
char (3.23, 3.22), single (3.21, 3.11), cipher
(3.09, 2.98)

Programmer decimal (6.81, 3.16), number (6.79, 2.85),
float (6.68, 3.45)

character (1.73, 2.60), char (1.64, 2.64),
boolean (1.43, 2.17)

Boolean
Non-programmer condition (5.32, 3.01), logic (5.26, 2.94),

binary (5.11, 3.29)
complex (3.33, 2.89), double (3.29, 2.83),
mode (3.18, 2.70)

Programmer boolean (7.68, 3.11), bool (7.63, 3.08),
binary (6.25, 3.33)

complex (2.13, 2.63), real (2.12, 2.71), dou-
ble (1.83, 2.58)

String
Non-programmer characters (6.37, 2.76), text (6.15, 3.01),

charstring (5.89, 2.90)
complex (4.29, 2.72), boolean (3.73, 3.07),
ascii (3.52, 2.91)

Programmer string (7.48, 3.07), text (7.23, 2.58),
charstring (7.21, 2.76)

byte (3.63, 3.21), alphabetic (3.58, 2.91),
boolean (1.83, 2.86)

Enclosing
Text

Non-programmer ''my words here'' (7.57, 2.89), ``my words
here``(7.09, 3.05), [my words here] (6.93,
2.90)

start my words here end (3.60, 3.05), $my
words here$ (3.21, 2.91), ?my words here?
(3.15, 2.75)

Programmer ''my words here'' (8.35, 2.71), ``my words
here``(8.31, 2.55), ’my words here’ (7.38,
2.75)

start my words here end (3.26, 2.88), $my
words here$ (3.14, 2.57), ?my words here?
(2.77, 2.28)

Table IV. Word Choice Results for Variable Manipulation. (Symbol Choices with the Same Average
Were Sorted Arbitrarily)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices
Assignment
Operator

Non-programmer x = 1024 (6.90, 3.01), x is 1024 (6.32,
3.02), x : 1024 (5.51, 3.01)

x += 1024 (3.52, 2.78), x + 1024 (3.16,
2.89), x / 1024 (3.12, 2.78)

Programmer x = 1024 (7.87, 2.93), x is 1024 (5.77,
3.12), x =: 1024 (5.45, 2.69)

x += 1024 (3.21, 3.24), x + 1024 (1.98,
2.30), x / 1024 (1.49, 2.11)

String
Concatenation

Non-programmer fire + fox (7.82, 2.79), fire & fox (6.40,
3.40), fire fox (5.77, 3.29)

fire ! fox (2.59, 2.49), fire ? fox (2.51,
2.82), fire $ fox (2.46, 2.61)

Programmer fire + fox (8.35, 2.41), fire & fox (6.48,
3.09), fire fox (4.71, 3.37)

fire - fox (1.94, 2.68), fire ? fox (1.94,
2.35), fire $ fox (1.67, 2.03)

Cast
Non-programmer use t as Dog (5.90, 2.78), handle t as Dog

(5.82, 2.96), apply Dog to t (5.46, 2.72)
t(Dog) (3.61, 2.75), t + Dog (3.13, 2.77),
tˆ#-dog (2.67, 2.62)

Programmer handle t as Dog (6.15, 2.97), use t as Dog
(5.99, 2.95), cast(t, Dog) (5.85, 2.64)

(t)Dog (3.63, 2.85), t + Dog (2.50, 2.67),
tˆ#-dog (2.15, 2.33)

Modulus
Non-programmer x = remainder of 7 / 2 (5.96, 3.01), x =

remainder 7 / 2 (5.71, 2.99), x = 7 / 2
remains (5.55, 3.14)

x = 7 2 (3.44, 3.24), x = 2 % 7 (3.12,
3.10), x = 7 . 2 (2.85, 2.79)

Programmer x = 7 % 2 (6.86, 3.44), x = 7 mod 2 (6.75,
3.10), x = remainder of 7 / 2 (6.21, 3.03)

x = 7 / 2 (3.08, 3.20), x = 7 2 (2.70, 2.67),
x = 7 . 2 (2.08, 2.31)

Increment
Non-programmer x = x + 1 (7.06, 2.71), x + 1 (5.93, 2.97),

raise x (5.49, 2.72)
x -= 1 (3.07, 3.15), x -- (2.82, 2.94), lower
x (2.59, 2.78)

Programmer x = x + 1 (8.37, 2.36), x ++ (7.44, 2.73), x
+= 1 (7.14, 3.08)

x -- (1.62, 2.35), x -= 1 (1.44, 2.19), lower
x (1.42, 1.95)

Non-programmers, on the other hand, presented little consistency in their ratings.
Some of the highest ranked words were condition, logic, and binary.

The last variable type tested was for the string data type. Non-programmers rated
the choices characters, text, and charstring highly. Programmers preferred the
words string, text, and charstring. As not all programming languages use quota-
tion marks for indicating the beginning and ending of a string, we also tested symbols
used for enclosing text (e.g., single quotes, double quotes). Both programmers and non-
programmers rated double straight quotes and double slanted quotes well.
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Table V. Word Choice Results for Control Structures

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

If
Non-programmer if (6.89, 2.78), when (6.59, 2.93), require

(6.46, 2.63)
case (4.56, 3.02), do (4.52, 3.02), stop
(3.72, 2.78)

Programmer if (8.37, 2.47), when (7.49, 2.64),
whenever (6.86, 2.75)

only (5.30, 2.94), do (4.58, 3.28), stop
(3.02, 2.81)

Loops
Non-programmer repeat (6.88, 2.94), again (6.43, 3.05),

loop (6.30, 3.20)
foreach (2.99, 2.97), while (2.37, 2.70), for
(2.13, 2.83)

Programmer loop (7.88, 2.28), repeat (7.49, 2.70),
cycle (6.65, 2.45)

duplicate (4.67, 2.82), foreach (4.35,3.02),
echo (4.13, 2.87)

In Table IV, we asked questions about manipulating variables. Overall, both pro-
grammers and non-programmers rated the symbol = as the most intuitive choice for
assignment (outside the 95% confidence intervals of all others with the exception of
the word is (for non-programmers)). We also tested the concept of string concatena-
tion and found that both programmers and non-programmers ranked the symbols +,
&, and _ highly for this task. For the concept of casting static types, both programmers
and non-programmers yielded little consensus.

We also tested the concepts of modulus and incrementing variables. First, when
asked about the modulus operator, non-programmers rated x = remainder of 7 / 2
and x = remainder 7 / 2 as more intuitive compared to x = 7 % 2 or x = 7 mod 2,
which programmers rated as the most intuitive. Additionally, modern programming
languages often allow shorthand to phrases like x = x + 1, such as x++ or ++x. In this
case, both groups rated x = x +1 highest, although the most typical shorthand (x++)
was fairly close among our sample of programmers. While it may be a coincidence, non-
programmers did not rate the x++ shorthand highly which coincides with the results
of Dolado et al. [2003], who documented empirical evidence that side-effect operators
such as x++ cause a statistically signifiant decrease in program comprehension.

3.2.2. Control Flow. Just as the use of static types and variables is common in pro-
gramming, essentially all major programming languages have some form of program
control flow. In this section, we present results in regard to word and symbol choices for
conditionals, loops, and operators commonly used in conditional statements (e.g., ==
vs. =, || vs. or). The results for loops and conditionals can be found in Table V. For con-
ditionals both programmers and non-programmers rated the word if highly, although
several other choices were rated similarly well among non-programmers. For loops,
programmers rated the word loop and repeat highly, while non-programmers rated
repeat and several other words that may imply repetition highly (e.g., again, loop).
Note that what are perhaps the three most common words for looping in computer
science, for, while, and foreach, were rated as the three most unintuitive choices by
non-programmers. This result replicates previous work [Stefik and Gellenbeck 2011].

We asked five questions in regard to boolean operators (Table VI). For testing
equality, programmers rated the choice x == y as the most intuitive, which is not
surprising, considering this is commonly used in many programming languages.
Non-programmers, however, rated this choice highly, but lower than x = y or x is y.
For the concept of not equal to, Programmers rated the choice x != y as the most
intuitive, which is also used in many programming languages. Non-programmers
rated the choices x unequal y and x not= y as most intuitive, which were also rated
comparatively highly by programmers. When rating the choices for the concept of
boolean and, both programmers and non-programmers rated the word and as the most
intuitive, followed by & and &&. Similarly, the word choice rated as the most intuitive
to represent a boolean or was the word or. When asked to rate word choices for the
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Table VI. Word Choice Results for Boolean Comparison Operators

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices
Boolean
Equals

Non-programmer x = y (8.15, 3.10), x is y (7.87, 2.84), x ==
y (7.04, 3.29)

x :? y (3.37, 2.88), x ?: (y 3.15, 2.75), x
>< y (2.90, 2.72)

Programmer x == y (8.64, 2.20), x isEqual:y (7.17,
2.66), x is y (6.81, 3.17)

x <-* y (3.14, 2.84), x <> y (2.12, 2.52),
x >< y (2.02, 2.36)

Not Equal To
Non-programmer x unequal y (6.32, 2.96), x not= y (5.84,

3.16), x =\\= y (4.16, 3.32)
x / y (2.74, 2.91), x == y (2.57, 3.11), x =
y (2.43, 3.10)

Programmer x != y (7.61, 2.77), x not= y (6.54, 2.87),
x unequal y (6.45, 3.12)

x / y (1.92, 2.64), x = y (1.90, 2.78), x ==
y (1.85, 2.67)

And
Non-programmer x and y (8.29, 3.09), x & y (8.15, 2.89), x

&& y (6.61, 3.03)
only x or y (1.98, 2.64), either x or y
(1.89, 2.84), x nor y (1.56, 2.55)

Programmer x and y (8.85, 2.42), x & y (8.65, 2.38), x
&& y (7.99, 2.80)

either x or y (1.65, 2.48), only x or y
(1.62, 2.45), x nor y (1.46, 2.37)

Or
Non-programmer x or y (6.28, 3.53), either x or y (5.95,

3.37), x and y (5.41, 3.45)
x v y (3.94, 3.17), x ˆ y (3.54, 2.79), x nor
y (2.13, 2.86)

Programmer x or y (7.60, 3.17), either x or y (6.75,
3.40), x ||y (5.93, 3.73)

x ˆ y (3.49, 3.47), x exclusive and y (3.38,
3.54), x nor y (1.67, 2.44)

Xor
Non-programmer either x or y (6.29, 3.42), x or y (6.24,

3.41), only x or only y (6.20, 3.53)
x and y (3.15, 3.53), x exclusive and y
(2.99, 3.00), x nor y (2.91, 3.06)

Programmer only x or only y (7.86, 3.21), either x or
y (7.20, 3.24), x xor y (6.33, 3.42)

x & y (1.82, 2.70), x && y (1.58, 2.54), x
and y (1.46, 2.69)

Table VII. Word Choice Results for Arrays. (Word Choices with the Same Average Were Sorted Alphabetically.
Symbol Choices with the Same Average Were Sorted Arbitrarily)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Array
Non-programmer value series x (5.60, 2.78), value string x

(5.60, 3.06), value arraylist x (5.35, 2.59)
value x (3.79, 2.90), value &x
(3.34, 2.77), value @x (3.24, 2.63)

Programmer value x[] (6.36, 2.84), value array x (6.21,
2.64), value arraylist x (5.52, 2.67)

value x (3.17, 3.06), value @x
(2.96, 2.63), value &x (2.82, 2.73)

Index Operator
Non-programmer packingList:5 (6.66, 2.75), packingList(5)

(6.48, 3.05), packingList[5] (6.34, 3.08)
packingList&5 (3.85, 2.99),
packingList!5 (3.68, 2.81), pack-
ingList$5 (3.33, 2.70)

Programmer packingList[5] (8.40, 1.98), packingList(5)
(6.90, 2.79), packingList at 5 (6.58, 2.66)

packingList&5 (3.33, 2.52),
packingList$5 (3.32, 2.50),
packingList!5 (3.02, 2.33)

programming concept of an exclusive or both groups ranked more verbose choices, like
either x or y and only x or only y, as intuitive. Non-programmers also ranked
the syntax x or y as intuitive, implying that these individuals probably did not fully
grasp the concept. This result replicates previous work [Stefik and Gellenbeck 2011].

3.2.3. Data Structures. Table VII shows the results for two questions concerning the
programming language concepts of an array x of type value and the index opera-
tor used to access one of the elements in an array. For the first, results for non-
programmers were inconclusive. Programmers rated the choice value x[] as the most
intuitive, corresponding to C, which most of our programmers were familiar with. For
retrieving the element on position 5 from the array packingList, non-programmers
also showed no clear preference. Programmers, however, rated the syntax packingList
[5] well.

As data structures in statically typed programming languages often use generics,
we tested these preferences in our study. We differentiated between generics of one
data type and generics of multiple data types (Table VIII). For the first, we asked
participants to rate syntax for a generic structure list with elements of type dog.
Generally, we find the results on generics to be inconclusive. If an intuitive syntax
exists for representing generics, we did not appear to find it.
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Table VIII. Word Choice Results for Generics

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Generics
Non-programmer list[dog] (6.27, 2.55), list(dog) (6.21,

2.56), list{dog} (5.96, 2.55)
list using dog (4.59, 2.81), list-dog (4.44,
2.69), dog list (3.91, 2.83)

Programmer list<dog> (6.49, 2.46), list[dog] (6.39,
2.78), list(dog) (5.77, 2.92)

dog list (4.71, 3.22), list->dog (3.99,
2.78), list-dog (3.60, 2.61)

Multiple Type
Generics

Non-programmer books(shelfnumber, title) (6.17, 2.58),
books[shelfnumber, title] (6.05, 2.63),
books{shelfnumber, title} (5.72, 2.74)

books-shelfnumber, title (4.30, 2.65),
books->shelfnumber, title (4.24, 2.70),
shelfnumber, title books (4.05, 2.98)

Programmer books[shelfnumber, title] (6.67, 2.65),
books(shelfnumber, title) (6.51, 2.75),
books{shelfnumber, title} (6.25, 2.62)

books->shelfnumber, title (4.14, 2.43),
books-shelfnumber, title (3.85, 2.59),
shelfnumber, title books (2.98, 2.70)

Table IX. Word Choice Results for Classes and Inheritance. (Word/Symbol Choices with the Same Average
Were Sorted Arbitrarily)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Class
Non-programmer object (6.21, 2.76), structure (5.87,

2.77), framework (5.84, 2.70)
interface (4.18, 3.03), instance (3.46,
3.04), article (3.35, 2.90)

Programmer object (6.95, 2.61), structure (6.76,
2.65), class (6.58, 2.85)

interface (4.06, 2.75), essence (3.85,
2.60), article (2.98, 2.47)

Is a
Non-programmer truck is a vehicle (6.56, 2.92), truck :

vehicle (5.95, 2.65), truck is vehicle
(5.88, 3.08)

truck using vehicle (3.57, 2.70), truck
overrides vehicle (3.45, 2.75), truck
eats vehicle (2.15, 2.69)

Programmer truck is a vehicle (7.38, 2.48), truck
is vehicle (6.57, 2.60), truck inherits
vehicle (5.89, 2.97)

truck imitates vehicle (3.74, 2.57),
truck >> vehicle (3.74, 2.93), truck
overrides vehicle (3.70, 2.63), truck
eats vehicle (1.26, 1.93)

Parent
Non-programmer source (5.65, 3.00), foundation (5.52,

2.87), parent (5.40, 2.84)
central (4.15, 2.65), remote (4.07,
2.72), uncle (3.95, 2.87)

Programmer source (5.88, 3.03), parent (5.77, 3.02),
foundation (5.37, 3.09)

prime (3.67, 2.95), uncle (3.17, 2.96),
remote (2.96, 2.62)

This
Non-programmer self (6.52, 3.17), myself (6.37, 3.14), me

(6.26, 3.19)
residential (3.79, 2.80), destination
(3.66, 3.10), pointer (3.43, 3.01)

Programmer self (7.61, 2.51), me (7.01, 2.90), myself
(6.88, 2.93)

residential (3.14, 2.68), destination
(3.00, 2.98), constant (2.60, 2.92)

Abstract
Non-programmer blueprint (5.93, 3.04), frame (5.91,

2.70), model (5.65, 3.02)
virtual (3.85, 2.72), blank (3.68, 3.02),
void (3.59, 2.97)

Programmer prototype (6.42, 2.79), frame (5.95,
2.87), blueprint (5.92, 2.79)

blank (3.70, 2.75), void (3.60, 2.65),
empty (3.50, 2.64)

3.2.4. Object-Orientated Programming. Multiple questions in this study covered concepts
relevant to object-oriented programming (see Table IX). First, for the concept of a class,
both programmers and non-programmers rated several words highly, including the
word object and structure. In regard to inheritance, we asked the participants to rate
different word choices that describe an is-a relationship between two classes: truck
and vehicle. Both groups rated the syntax truck is a vehicle as most intuitive.

Interestingly, C++’s operator for inheritance, colon, was rated within the statistical
margin of error of the English words is a by non-programmers. For the concept of a
reference to a super class, both programmers and non-programmers rated the words
source, parent, and foundation comparably well. Many programming languages use
a word such as this to represent the current object (e.g., Java). We tested this concept,
finding the words self, myself, and me to be rated well overall. There was little consen-
sus for the concept of abstract classes, although ratings for words such as blueprint,
frame, and prototype appeared relatively favorable.

Table X shows the results for three questions that cover programming language
concepts related to methods. Both groups rated the words procedure, operation, and
action as fairly intuitive in describing the concept of a method. In previous work
[Stefik and Gellenbeck 2011], we used a different phrasing of the concepts for this
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Table X. Word Choice Results for Function Handling

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Method
Non-programmer procedure (6.90, 2.65), operation (6.54,

2.67), task (6.40, 2.73)
service (4.35, 2.86), enactment (4.07,
2.72), stuff (2.96, 2.56)

Programmer procedure (7.29, 2.59), action (6.98,
2.54), operation (6.83, 2.64)

duty (4.08, 2.64), service (3.94, 2.57),
stuff (1.98, 2.30)

Return Type
Non-programmer results in dog (5.80, 2.85), gets dog

(5.57, 2.65), produces dog (5.55, 2.85)
elicits dog (3.61, 2.73), begets dog
(3.57, 2.64), rejects dog (3.41, 2.80)

Programmer returns dog (7.10, 2.41), results in dog
(6.65, 2.68), produces dog (5.85, 2.56)

surrenders dog (3.23, 2.75), effects dog
(3.13, 2.35), rejects dog (1.98, 2.55)

Return
Non-programmer provide (6.18, 2.93), report (6.13, 2.77),

return (5.96, 2.85)
pass (4.27, 2.82), sub (3.82, 2.58), remit
(3.68, 2.77)

Programmer return (7.54, 2.45), report (6.57, 2.93),
provide (6.55, 2.77)

mention (4.54, 2.58), sub (3.89, 2.52),
remit (3.76, 2.51)

Table XI. Word Choice Results for Properties

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Public
Non-programmer public (8.22, 2.48), open (8.15, 2.76), un-

restricted (7.70, 2.77)
hidden (1.45, 1.98), closed (1.44, 2.54),
private (0.93, 2.04)

Programmer public (9.23, 1.32), unrestricted (8.26,
2.03), open (8.05, 2.52)

restricted (1.24, 2.22), closed (0.86,
1.91), private (0.81, 2.11)

Private
Non-programmer private (8.48, 2.52), restricted (8.06,

2.66), closed (7.87, 2.38)
public (1.54, 2.49), unprotected (1.45,
2.06), open (1.21, 2.22)

Programmer private (9.12, 1.87), restricted (8.62,
1.83), closed (7.87, 2.30)

unprotected (0.90, 1.53), exposed (0.89,
1.55), public (0.85, 1.72)

Protected
Non-programmer semiprotected (7.13, 2.89), usable (5.12,

2.88), special (4.98, 3.08)
hidden (3.56, 2.69), private (2.93, 2.81),
closed (2.45, 2.83)

Programmer semiprotected (7.85, 2.58), usable (5.94,
2.74), special (5.79, 3.23)

hidden (3.00, 2.47), private (2.65, 3.09),
closed (1.75, 2.49)

Constant
Non-programmer permanent (8.27, 2.65), constant (8.05,

2.92), const (6.83, 2.87)
integer (3.22, 2.94), variable (2.43,
2.97), writable (2.17, 2.25)

Programmer constant (9.19, 1.97), const (8.43, 2.53),
permanent (8.23, 2.44)

integer (2.11, 2.43), writable (1.33,
1.87), variable (1.18, 1.96)

Static
Non-programmer constant (6.74, 2.66), permanent (6.73,

2.59), fixed (6.45, 2.65)
resilient (3.74, 2.65), latent (3.26, 2.77),
volatile (2.98, 2.69)

Programmer fixed (7.31, 2.42), constant (7.26, 2.86),
static (6.62, 2.74)

idle (3.61, 2.82), latent (2.83, 2.62),
volatile (2.62, 2.80)

question, although our findings are essentially the same. When describing the data
type of the return value, which in our examples is of type dog, non-programmers rated
a host of syntactical choices comparably. Programmers predictably rated returns dog
highly, although they rated results in dog as comparable. We also asked about
obtaining results from functions (returning), for which non-programmers rated a
number of choices around six, including provide, report, and return. Programmers
rated return above all other choices.

In object-oriented programming, it is common to use words such as public and
private to control access to objects. Table XI shows the results for questions related to
public, private, protected, constant, and static. For the concepts of public and private,
a number of words were rated very highly, including the ones most commonly seen in
programming languages (e.g., public and private, respectively). For protected, how-
ever, the word choices overall were rated relatively low (around four), except for the
choice semiprotected. For the concept constant programmers rated the word constant
as the most intuitive. Non-programmers gave permanent a comparable rating. For
the last concept, static, we feel the results were generally inconclusive, even for our
programmers.

Table XII shows the results for including libraries in a program, calling functions on
objects, and the concept of null. First, we asked participants to rate a concept similar
to Java’s import. While we included the word include here, our concept description
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Table XII. Word Choice for Other Tested Concepts

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Use
Non-programmer obtain math functions (6.23, 2.64),

use math functions (5.99, 2.92),
import math functions (5.85, 2.98)

procure math functions (4.13, 2.75),
purchase math functions (3.57, 2.70),
friend math functions (3.16, 2.51)

Programmer import math functions (7.00, 2.51),
include math functions (6.77, 2.56),
use math functions (6.56, 2.49)

framework math functions (4.35, 2.63),
friend math functions (3.81, 2.81),
purchase math functions (2.82, 2.22)

Dot Operator
Non-programmer Window:close (6.24, 3.08), Window-

>*close (5.78, 3.17), Window->close
(5.63, 3.04)

Window<--close (3.80, 2.80),
Window..close (3.78, 2.91), Window@#-
close (2.49, 2.75)

Programmer Window.close (6.94, 2.90),
Window:close (6.44, 2.61), Window-
>close (6.12, 2.81)

Window--close (3.18, 2.79), Window
<--close (2.61, 2.46), Window@#-close
(1.61, 1.93)

Null
Non-programmer undefined (7.12, 3.23), empty (6.37,

2.95), blank (6.29, 2.90)
zero (4.23, 3.53), selected (2.22, 2.58),
defined (2.06, 2.70)

Programmer undefined (7.57, 2.85), null (7.51,
2.69), empty (7.31, 2.70)

zero (3.30, 3.21), selected (1.90, 2.34),
defined (1.74, 2.62)

Table XIII. Word Choice Results for Error Handling

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Try
Non-programmer check (6.05, 2.63), test (5.84, 2.76), on

error (5.35, 2.95)
insure (3.67, 2.53), preserve (3.50,
2.59), protect (3.45, 2.74)

Programmer test (5.84, 2.76), check (6.05, 2.63), try
(5.34, 2.87)

guard (3.70, 2.81), protect (3.45,
2.74), preserve (3.50, 2.59)

Catch
Non-programmer error (6.91, 2.98), detect (6.45, 2.73),

problem (6.43, 3.10)
except (3.51, 2.53), ordo (3.50, 2.79),
main (3.04, 2.74)

Programmer error (7.08, 2.54), detect (6.44, 2.86),
problem (6.39, 2.88)

except (4.13, 2.75), ordo (3.65, 2.69),
main (2.08, 2.11)

Throw
Non-programmer error (7.11, 2.74), fix (6.46, 2.78), alert

(6.43, 2.62)
handler (3.22, 2.47), throw (3.11,
2.65), toggle (3.00, 2.58)

Programmer error (7.49, 2.52), alert (7.37, 2.31), fix
(6.33, 2.64)

handler (3.76, 2.79), do (3.51, 2.94),
toggle (3.38, 2.64)

Finally
Non-programmer regardless (6.70, 2.92), always (5.95,

3.15), execute (5.85, 2.96)
sometimes (3.21, 2.77), pool (2.74,
2.70), never (2.66, 2.88)

Programmer regardless (7.08, 2.73), always (6.33,
3.04), execute (6.21, 2.76)

sometimes (2.60, 2.64), pool (2.21,
2.52), never (1.81, 2.63)

matches closer to how the mechanism in Java works, as opposed to C++. For non-
programmers, a number of words were rated at around six, including obtain and use.
Programmers rated import, include, and use well. Second, participants rated symbols
that denote calling the function close on a class Window. Non-programmers rated the
syntax Window:close as one of few highly rated alternatives, while the dot and the
colon fared well with programmers. This somewhat odd result also replicates previous
work [Stefik and Gellenbeck 2011]. Lastly, we tested the concept of a null pointer (or
reference). The word undefined stands out for both groups, although a number of other
alternatives were rated comparably.

We also asked participants to rate words related to the concepts of try, catch,
throw, and finally (Table XIII). For the concept of try, both programmers and non-
programmers rated the words check and test well, although overall there was little
agreement amongst non-programmers. The words detect, error, and problem appear
to stand out among the alternatives for the concept of a catch block, whereas for the
concept of throwing an exception, the words that stand out appear to be error, fix, and
alert. For the concept of finally, which in some programming languages means that
a block is guaranteed to execute, it is interesting to note that the word finally was
rated poorly by both programmers and non-programmers while the word regardless
was rated well.
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Table XIV. Word Choice Results for I/O

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Input
Non-programmer input (7.13, 2.84), request (6.80, 2.70),

ask (6.13, 3.00)
listen (4.23, 3.30), read (4.20, 2.92),
cout (3.44, 3.29)

Programmer input (7.35, 2.67), get (6.76, 2.91),
request (6.73, 2.63)

take (4.14, 2.63), write (4.07, 2.97),
cout (3.19, 3.27)

Output
Non-programmer display (6.30, 2.79), output (6.15, 2.91),

show (5.80, 2.82)
console.write (4.74, 3.10), printf (4.06,
2.75), set (3.71, 2.79)

Programmer display (7.33, 2.51), cout (7.11, 3.11),
output (7.10, 2.49)

type (3.90, 2.55), read (3.45, 2.92), set
(3.17, 2.68)

Say
Non-programmer vocalize (7.05, 2.57), speak (6.95, 3.20),

say (6.90, 2.71)
expose (3.99, 2.90), display (3.79, 2.84),
print (3.51, 2.95)

Programmer speak (7.50, 2.79), vocalize (7.42, 2.73),
say (7.25, 2.36)

print (3.39, 2.99), display (3.20, 2.75),
expose (2.87, 2.60)

Table XV. Word Choice Results for Comments. (Word Choices with the Same Average Were
Sorted Alphabetically)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices
Single Line
Comment

Non-programmer // The next line (5.80 2.79), comment
The next line (5.70 2.76), note The next
line (5.50 2.80)

secret The next line (3.61, 2.91), REM
The next line (3.41, 2.50), quiet The
next line (3.37, 2.56)

Programmer // The next line (7.77, 2.76), comment
The next line (5.00, 3.21), -- The next
line (4.93, 2.90)

REM The next line (3.11, 2.86), quiet
The next line (2.69, 2.59), secret The
next line (2.50, 2.46)

Multi Line
Comment

Non-programmer /* comment text here */ (5.13, 2.91), ---
comment text here --- (4.71, 3.05), /**
comment text here **/ (4.70, 3.13)

aside comment text here endaside
(3.29, 2.73), hidden comment text here
hidden (3.29, 3.00), header comment
text here footnote (3.27, 2.78), hidden
comment text here not hidden (3.26,
2.59)

Programmer /* comment text here */ (7.35, 3.05), /**
comment text here **/ (6.81, 2.56), <!--
comment text here --> (5.40, 3.19)

conceal comment text here reveal
(2.92, 2.60), begin comment text here
end (2.87, 2.72), header comment text
here footnote (2.35, 2.50)

3.2.5. Input, Output, and Comments. As can be seen from Table XIV, for the concept of
input, both programmers and non-programmers rated the word choices input and
request highly. For the concept of output, both groups rated the choices display,
and output well, although there was little consensus overall for non-programmers.
As our development team writes a considerable amount of software for the blind and
visually impaired community [Stefik et al. 2011a], we were curious what novices and
programmers thought an intuitive word choice would be for the concept of outputting
text-to-speech. For this concept, both programmers and non-programmers rated
speak, vocalize, and say well.

As programming languages often vary substantially in what symbols represent the
ideas of single and multiline comments (Table XV), we tested these concepts as well.
For making the text The next line into a comment, non-programmers rated the En-
glish words note and comment highly. Interestingly, however, non-programmers also
rated the traditional single line comment used in C++ at approximately the same value
(//). For multiline comments, non-programmers showed no clear preference, while pro-
grammers, not surprisingly, rated as intuitive the symbols they were most familiar
with (/* */).

3.2.6. Aspect-Oriented Programming. While the features common in aspect-oriented pro-
gramming [Kiczales 1996] are not frequently included in most mainstream program-
ming languages (with notable exceptions), a number of researchers have considered
it to be a success (in at least one case, paradoxically [Steimann 2006]), despite recent
empirical evidence showing mixed results with its usage in formal studies [Hanenberg

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 19, Publication date: November 2013.



�

�

�

�

�

�

�

�

19:18 A. Stefik et al.

Table XVI. Word Choice Results for Aspect Oriented Programming. (Word Choices with the Same Average Were
Sorted Alphabetically)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Pointcut
Non-programmer target (6.12, 2.73), location (5.93, 2.78),

position (5.39, 2.81)
pointcut (4.01, 2.67), joinpoint (3.83,
2.61), locus (3.73, 3.03)

Programmer target (6.33, 2.35), location (6.32, 2.46),
position (5.94, 2.70)

joinpoint (3.86, 2.45), pointcut (3.86,
2.66), sample (3.76, 2.59), locus (2.58,
2.53)

Aspect
Non-programmer situation (5.40, 2.63), location (5.32,

2.76), position (4.87, 2.61)
pointcut (3.88, 2.64), joinpoint (3.76,
2.78), end (3.24, 2.85)

Programmer instance (5.38, 2.82), location (5.10,
2.89), target (4.95, 2.80)

aspect (3.95, 2.94), pointcut (3.33, 2.75),
end (2.83, 2.72)

Table XVII. Word Choice Results for Method Modifiers

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Before
Non-programmer advance (5.57, 2.57), initial (5.24 2.57),

preempt (5.02 2.95)
earlier (3.71, 2.67), delete (2.88, 3.30),
ante (2.77, 2.57)

Programmer initial (5.68, 2.99), beginby (5.61, 3.10),
before (5.20, 2.87)

independent (2.82, 2.55), ante (2.12,
2.20), delete (1.25, 2.21)

After
Non-programmer concluding (6.35, 2.59), final (5.82,

2.79), after (5.66, 2.58)
back (3.59, 2.57), static (3.13, 2.68),
before (3.02, 2.75)

Programmer concluding (6.37, 2.61), after (6.13,
2.49), final (6.06, 2.68)

ultimate (3.14, 2.73), before (2.60, 2.99),
static (2.43, 2.51)

Around
Non-programmer beforeandafter (5.40, 3.11), encircle

(5.01, 2.78), firstlast (4.99, 2.71)
before (3.76, 2.68), confine (3.65, 2.80),
twice (3.52, 2.59)

Programmer beforeandafter (6.05, 2.93), firstlast
(5.06, 2.89), encircle (5.02, 2.83)

before (3.05, 2.53), dotwice (3.00, 2.54),
twice (2.98, 2.64)

et al. 2009]. Before discussing our results, we should say briefly that aspect-oriented
programming is a paradigm for handling so-called “cross-cutting” concerns. Cross-
cutting concerns are those that exist across traditional object-oriented boundaries. A
common example is logging. For example, if a researcher wanted to log every method
on a large system, they have at least two alternatives, namely: (1) write a traditional
logger, injecting code into every method to be logged, or (2) write an aspect-oriented
logger, where the compiler automatically injects the logging code into a set of methods
specified by the programmer.

In terms of our data overall, we hesitate to read into the aspect-oriented results;
generally there were minor differences across the board (target appeared to do well for
describing pointcuts), but we found little terminology that novices rated all that well.
We can say, however, that many of the choices made by the aspect-oriented community
(e.g., the word pointcut) were rated particularly poorly. Whether this was because
novices did not understand what we were asking or because they felt no word choice
adequately described the concept is unclear.

3.3. Study 2: Surveys on Larger Program Constructs

In Study 1, we investigated the understandability or intuitiveness of common word and
symbols choices in programming languages. In our second, we take a slightly different
perspective toward answering RQ1, which to remind the reader is: Do novices and
programmers subjectively consider all programming language syntax to be equally
intuitive (or not intuitive)? In this case, we have gathered syntactical constructs in
nine programming languages, including C++, Java, Smalltalk, PHP, Perl, Ruby, Go,
Python, and Quorum, again asking non-programmers with no experience and more
advanced computer science students (labeled “Programmer” in our tables). We focused
our questions on seven common computer science concepts, including loops, strings,
if statements, functions, return values, constructors, and inheritance. While our first
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Fig. 1. This is an example of four of the loop examples shown to participants. Reading left to right, the
languages tested were Quorum, Ruby, Go, and Smalltalk. The task description for this example is shown in
Table XVIII to the right of the heading, “loop.”

Table XVIII. Task Descriptions

Task Task Description
1: Loop The code in the square boxes is supposed to make any code that may be in the black field execute 10

times. In order for the code in the black field to work, a variable named i tracks how often the code
has been executed.

2: String This code is supposed to define a variable named x that saves the sentence “Your result is: ”. It also
should define another variable that stores the numeric value 10. The code should then combine the
values of the two variables to form the sentence, “Your result is: 10” and save it to the variable x. Some
intermediate variables may be used.

3: If The code in the square boxes is supposed to define a variable called x that stores the numeric value
10. It is also supposed to make any code that may be in “Block 1” execute only if x is equal to 10. Any
code that may be in “Block 2” will be executed whenever x smaller than 10. Any code that may be in
“Block 3” will be executed otherwise.

4: Function Suppose we want to specify that there exists a list of instructions that represents a tangible behavior,
(e.g., walking at a certain speed). In each example, there is a black field that represents the specific
things that must occur when walking, like bending the knees and moving the legs. In this case, each
example is supposed to indicate the following behavior: walk at a certain speed.

5: Return Suppose we want to specify that there exists a list of instructions that represents a tangible behavior,
e.g., to draw a name from a hat. In each example, there is a black field that represents the specific
things that must occur when drawing a name, like pulling a piece of paper from the hat and unfolding
it. At the end of the list of instructions, the name on the piece of paper needs to be obtained. In this
case, each example is supposed to indicate the following behavior: draw a name from a hat, which in
this case obtains the name Bill.

6: Constructor This code should make a representation of a dog in the computer. The code in the black box represents
a list of instructions that is executed when this representation is made. The code should define one
representation of a dog, named sam.

7: Inheritance This code should make a representation of a dog and a mammal in the computer. It should specify
that dogs are specific kinds of mammals. The code should specify that mammals have a height and
can walk. Similarly, dogs have a species and can bark. It should define a dog named sam, specify its
height as 15, its species as Dachshund, and should make sam bark.

study was largely formative descriptive data, in the second we explicitly define the
following null hypotheses.

H01. In aggregate, programming languages are rated as equally intuitive.
H02. All programming language constructs are rated as equally intuitive.
H03. Programming experience has no effect on subjective ratings of intuitiveness.

We discuss each of these hypotheses throughout the rest of the narrative.

3.3.1. Methodological Differences with Study 1. A complete list of the syntax we tested
would be too long for this article, but like before, a complete replication package with
all raw data, questions, surveys, scripts, and other materials are available from the
authors on request. To give an idea of the types of constructs we tested, see Figure 1,
which gives four looping examples. As in Study 1, for each question, we gave students
an English explanation of what the code does and asked raters to mark how intuitively
that syntax represented those ideas (see Table XVIII for a complete list). For loop
constructs, the description was “The code in the square boxes is supposed to make
any code that may be in the black field execute 10 times. In order for the code in the
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Fig. 2. The online LimeSurvey interface for one of the loop questions.

black field to work, a variable named i tracks how often the code has been executed.
Please rate each of the following solutions on a scale from 0 (0% intuitive) to 10 (100%
intuitive) on how intuitive you find the solution.” Note that the descriptions refer to a
square box and a black field, shown in Figure 2, but not in Figure 1. This differs slightly
from Study 1 in that the previous survey contained only words and symbols as possible
responses. Further, as we already described the great care we used in designing our
survey, which is very similar with our second experiment, we will not discuss this issue
further.

In each case, we took a short sample of code from a given language and asked par-
ticipants to subjectively rate how intuitively it matches the corresponding concept. We
took care to run our examples in a real compiler or interpreter for each language be-
fore putting them into the survey and to make each sample do approximately the same
thing. For testing the Smalltalk code, the program “VisualWorks” was used. To reduce
bias as much as possible, we chose not to give any identifying information about the
language in use for each sample and did not indicate that examples all came from a real
programming language (although all did). As such, participants who did not already
know a particular programming language could not have identified it. In some cases,
the language may have included text that could reveal the language to a savvy partici-
pant (e.g., statements such as import java.util.Vector;). In such cases, we removed
words such as “java” and replaced them with the generic phrase “abc.” This causes a
small minority of the examples to not compile, but prevents potential bias. We pilot-
tested this issue carefully on a separate sample, finding that it makes little difference
whether the language name is included or not. Finally, the version of Quorum used in
the examples was pre-1.0, a version that was never released. Several of the constructs
in Quorum were on the drawing board at the time, and we used our data to help us
improve the language before moving on to more advanced analysis (in Studies 3 and 4).

It is also important to note that some languages required separate include/im-
port/use statements for some features to work, while others included such features
by default. For example, C++ requires #include statements in order to use the string
class, but Java, and others, do not. We decided to include statements such as these
(e.g., include, import, using), because programmers literally have to type them into an
editor to make them work.

3.3.2. Results. Before analyzing our data, we first ensured it was approximately nor-
mally distributed (e.g., using QQ-plots, histograms) verifying that it did not exhibit
unreasonable skew or kurtosis. To test our hypotheses, we analyzed the reported intu-
itiveness ratings for our experiment in three ways: (1) with respect to the average lan-
guage intuitiveness across all tasks, (2) the scores of individual language constructs,
and (3) in terms of whether the individual was a programmer or non-programmer (see
Table XIX). For each task, we tested our hypotheses as a two-factor ANOVA, with
partial-eta (η2

p) values as a variance accounted for measure and Tukey HSD post-hoc
tests. Since the results are numerous, we provide only a selection of the ones we found
to be the most interesting.

A two-factor ANOVA reveals that languages are rated significantly differently across
the board (for all tasks), F(8, 13428) = 71.071, p < 0.001, η2

p = .041. Similarly, dif-
ferences between programmers and non-programmers were significant F(1, 13428) =
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Table XIX. Results for Larger Program Constructs. (Languages with the Same Average Were
Sorted Alphabetically)

Task Group Top Word/Symbol Choices Bottom Word/Symbol Choices

Overall
Non-programmer Quorum (5.53, 2.90), Java (4.99,

2.88), Ruby (4.95, 2.89)
PHP (4.57, 2.80), Smalltalk (4.57,
2.99), Perl (4.09, 2.75)

Programmer Java (7.03, 2.77), C++ (6.85, 2.89),
Quorum (6.22, 2.85)

Python (5.15, 2.87), Perl (5.09, 2.82),
Smalltalk (4.13, 2.68)

1: Loop
Non-programmer Quorum - repeat times (5.93, 3.02),

Smalltalk - timesRepeat (5.40,
2.77), C++/Java - while (5.21, 2.90)

Perl/PHP - for (3.15, 2.93), Go - for
(3.07, 2.34), Python - for i in range,
specific i (3.01, 2.79)

Programmer C++/Java - while (7.81, 2.46),
C++/Java - do while (7.57, 2.74),
C++/Java - for (7.31, 2.95)

Python - for i in range (4.23, 2.79),
Go - for range (3.78, 2.30), Python - for
i in range, specific i (2.94, 2.72)

2: String
Non-programmer Java (5.90, 2.79), Quorum (5.53,

2.95), PHP (5.03, 2.82)
Python (4.51, 2.63), C++ (3.97, 2.80),
Go (3.95, 2.45)

Programmer Java (6.71, 2.53), Quorum (6.56,
2.46), Python (6.29, 2.71)

PHP (4.61, 2.77), Smalltalk (4.03,
2.36), Go (4.01, 2.55)

3: If
Non-programmer C++/Java (6.18, 2.83), Quorum

(5.85, 2.66), Go (5.58, 2.54)
Perl (4.58, 2.56), PHP (4.58, 2.60),
Smalltalk (4.41, 2.65)

Programmer C++/Java (8.42, 2.24), Go (6.84,
2.35), Quorum (6.37, 2.70)

Perl (5.67, 2.32), Python (5.52, 2.75),
Smalltalk (3.99, 2.28)

4: Function
Non-programmer Quorum (6.04, 2.92), Smalltalk

(5.85, 3.24), Go (5.59, 2.54)
PHP (4.70, 2.60), C++/Java (4.12,
2.77), Perl (3.10, 2.55)

Programmer C++/Java (6.70, 2.85), Quorum
(6.49, 2.68), Go (6.16, 2.32)

PHP (5.77, 2.59), Smalltalk (4.74,
2.78), Perl (3.66, 2.54)

5: Return
Non-programmer PHP (5.68, 2.71), Python (5.67,

2.70), Quorum (5.67, 2.99)
Go (5.11, 2.45), Perl (3.79, 2.47),
Smalltalk (3.70, 3.09)

Programmer PHP (6.94, 2.33), C++ (6.91, 2.75),
Java (6.77, 2.61)

Ruby (5.97, 2.59), Perl (4.15, 2.59),
Smalltalk (3.03, 2.68)

6: Constructor
Non-programmer Quorum (4.88, 2.72), PHP (4.77,

2.58), Perl (4.62, 2.62)
Python (4.26, 2.48), Java (4.21, 2.76),
Smalltalk (4.18, 3.31)

Programmer C++ (5.68, 2.80), Java (5.67, 2.72),
Quorum (5.61, 3.18)

Go (4.32, 2.55), Python (3.56, 2.47),
Smalltalk (3.33, 3.05)

7: Inheritance
Non-programmer Ruby (5.88, 2.63), Quorum (5.62,

2.77), PHP (5.60, 2.81)
C++ (5.12, 2.48), Perl (5.05, 2.86),
Smalltalk (4.96, 2.82)

Programmer C++ (6.52, 2.67), Quorum (6.40,
2.59), Java (6.33, 2.81)

Python (5.09, 2.50), Perl (4.98, 2.55),
Smalltalk (3.95, 2.73)

363.565, p < 0.001, η2
p = .026, and there was a significant interaction between

programmer/non-programmer and language F(8, 13428) = 28.635, p < 0.001, η2
p =

.017. Effects of this size are commonly interpreted as reliable but small. It should be
clear to the reader that our first two null hypotheses, H01 and H02, should be rejected:
some languages, and some constructs in those languages, are subjectively rated
by humans as more intuitive than others. Interestingly, we were curious how well
our language, Quorum, was rated by non-programmers. Post-hoc Tukey HSD tests
reveal that Quorum was rated as statistically significantly more intuitive than Go
(p < 0.001), C++ (p < 0.001), Perl (p < 0.001), Python (p < 0.001), Ruby (p < 0.024),
Smalltalk (p < 0.001), PHP (p < 0.001), and approached significance with Java
(p = .055). The result holds generally for programmers as well, except that there was
no statistical difference between C++, Java, and Quorum, for these users (an example
of the interaction effect). We summarize the remainder of our results in Table XX,
giving the language, programmer, and interaction results. Obviously, this does not
mean that Quorum is more intuitive than these languages, but it does mean that
novices in our sample certainly perceived it to be.

Finally, our results also show that our third null hypothesis (H03) should be re-
jected. We found that for approximately every year of self-reported experience in C++,
users rated C++ examples higher, resulting in the following linear regression equation:
y = 5.37838 + 0.56818x. In this case, y is the rating for a particular C++ question and
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Table XX. A Summary Table Showing the Statistical Results. Overall, Results Indicate That Effects Were
Relatively Small (η2

p < .1 in Many Cases), but Were Also Real and Easily Detectable (Literally All Effects
Were Significant)

Language Experience Interaction
F df p η2

p F df p η2
p F df p η2

p

Aggregate 71.071 8 < 0.001 0.041 363.565 1 < 0.001 0.026 28.635 8 < 0.001 0.017
1: Loop 18.444 26 < 0.001 0.098 347.013 1 < 0.001 0.073 8.083 26 < 0.001 0.045
2: String 15.419 8 < 0.001 0.077 9.366 1 = 0.002 0.006 3.420 8 < 0.001 0.018
3: If-else 27.727 8 < 0.001 0.131 65.668 1 < 0.001 0.043 4.306 8 < 0.001 0.023
4: Function 15.107 8 < 0.001 0.076 35.320 1 < 0.001 0.023 7.302 8 < 0.001 0.038
5: Return 27.788 8 < 0.001 0.131 25.531 1 < 0.001 0.017 2.649 8 = 0.007 0.014
6: Constructor 6.993 8 < 0.001 0.037 4.126 1 = 0.042 0.003 3.583 8 < 0.001 0.019
7: Inheritance 7.445 8 < 0.001 0.039 5.106 1 = 0.024 0.003 2.980 8 = 0.003 0.016

x is the number of years of self-reported C++ experience. In short, users rated C++
syntax approximately half a point higher for every year of self-reported experience. An
omnibus F-test (which we remind the reader is just an ANOVA), reveals that this re-
sult is statistically significant, F(1, 1492) = 143.1, p < 0.001, multiple−R2 = 0.08754.
The adjusted R2 was 0.08693, close to the multiple − R2 already reported, indicating
that these results would have approximately the same effect size at the population
level. Our sample generally only had experience with C++, so we did not compare this
result with other languages.

3.4. Discussion of Studies 1 and 2

We have documented a corpus of data on human ratings of words, syntax, and larger
constructs in programming languages, with the goal of helping instructors and lan-
guage designers understand the following broad point: novices find many of the choices
made by language designers to be unintuitive. While we imagine many computer sci-
ence instructors already have a “gut feeling” that this is the case, our results help to
formalize this notion, in addition to cataloging a wide swath of possible choices. To
sum up the results more specifically, our two studies provide evidence for the follow-
ing claims: (1) while humans vary substantially in their opinions, not all program-
ming languages, nor their corresponding constructs, are rated as equally intuitive,
(2) some very common programming language syntax (e.g., for loops), is considered by
non-programmers (and sometimes by programmers) to be unintuitive, and (3) as pro-
grammers gain experience, they rate familiar syntax higher—by an average of about
half a point per year on an 11-point scale.

We recognize that some will claim our survey is a trivial exercise—perhaps believing
that human opinions do not matter in language design. While we find this line of
reasoning to be rather naive, given our observations while teaching novices in the
classroom, we have created a new technique for Experiments 3 and 4, called a Token
Accuracy Map (TAM), that provides an estimate of novice accuracy on a per-token
basis. While we have not tested all of the words in our sample, words that novices
report make sense (e.g., repeat) do seem to plausibly benefit novices when first learning
to program. Even if this were not the case, it would not impact our story greatly;
from our view, it seems perfectly reasonable to ask students what they think about
components of programming languages, so long as we recognize that surveys provide
us clues, not proof. The programming language design space is truly daunting and
surveys can give us investigative clues regarding many alternatives quickly.

We would, however, like to point out several threats to validity in our first two
experiments. First, our novice ratings are based on the assumption that the questions
are sensible descriptions of the concepts we are trying to describe and that novices

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 19, Publication date: November 2013.



�

�

�

�

�

�

�

�

An Empirical Investigation into Programming Language Syntax 19:23

understood what we were asking. Designing questions such that all readers will agree
they were phrased well is difficult, but we have attempted to make our questions
clear, neutral, and reasonable. We have already described our process, but we should
state again that all surveys suffer from the possibility of accidental or intentional
bias. A variety of textbooks devote far more space to these types of issues than we can
here (see e.g., Vogt [2006]). Further, it seems plausible, given the lack of consensus in
more advanced questions (e.g., exceptions, aspect-oriented programming) that novices,
despite our best efforts, may not have grasped our meaning. Detecting whether we
phrased the question poorly, whether the concept was understood, or whether novices
understood but did not have a consensus view, is not easily determined from our data.
Like any survey, varied replications by independent research groups are the easiest
way to ensure the correctness and neutrality of the results.

Second, while we have based our surveys around the concept of intuitiveness, we
have not defined the term formally. We made this decision intentionally, as our stud-
ies were designed in part to help our team garner a more formal understanding of
what intuitiveness might mean in the context of programming. While we are hesi-
tant to offer a formal definition, we do think intuitiveness in a programming language
may have recognizable properties. For example, individuals do appear to (1) rate as
intuitive common words with a well known meaning in English (e.g., repeat, unde-
fined), (2) rate as less intuitive metaphorical names (e.g., throw, catch), and (3) rate as
less intuitive symbols where the meaning in programming conflicts with the meaning
in English (e.g., the dot operator). However, while these properties seem reasonable
given our results, we still struggle with finding a definition of intuitiveness that is
completely satisfying. Importantly, intuitiveness is likely dependent on context. In our
case, the context was surveys in English of college students attending a university
in approximately the middle of the United States. Exploring this issue in other cul-
tures, and other languages, may help give our a community a better understanding
of not only what intuitiveness really means, but also how to manipulate it to improve
programming languages.

Third, in addition to the questions we asked novices, we suspect that some read-
ers may believe that, given that we are the inventors of the Quorum programming
language, that this influenced our results through a form of accidental bias. While
accidental bias is difficult to avoid, we should mention that when our surveys were
first being piloted, Quorum had not yet been invented. Succinctly, this potential threat
reverses causality—we used our surveys to help us investigate what the design of a
language could be, not the other way around. For Study 2, some parts of Quorum were
still hypothetical, but others had been either designed or implemented. Put another
way, we wanted to subject the design of a new and emerging language to peer review
from novice students in an effort to make it easier to understand. Of course, surveys do
not provide a complete picture, as will be obvious after experiment 4. However, many
of our findings here do fit well with common sense. For example, it certainly seems
plausible that the highest rated loop in Study 2, Quorum’s repeat 10 times might be
easier to use or understand than the traditional for(int i = 0; i < 10; i++). We
now move on to testing assumptions like these more formally.

4. STUDIES 3 AND 4: NOVICE ACCURACY RATES

The evidence presented in Studies 1 and 2 provides data on how humans subjectively
rate the intuitiveness of various programming constructs. Our goal with these surveys
was to give us clues into the kinds of constructs novices might find easy to understand;
techniques which were extremely useful in the formative development of Quorum. In
this section, however, we had novices actually try to program, investigating their syn-
tactic accuracy while using a variety of programming languages. This section includes
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both an expansion of a small-scale pilot study published previously [Stefik et al. 2011c]
and a replication that includes more programming languages on a larger sample. Af-
ter describing these studies, we give several samples, on a token-by-token level, of the
accuracy rates of each language, a presentation that we we call Token Accuracy Maps.
Broadly, we are trying to answer the following research question.

RQ2. Can novices using programming languages for the first time write simple
computer programs more accurately using alternative programming languages?

We think that empirical clues on this research question might provide insight for stu-
dents using these languages and instructors that ultimately have to teach them by
identifying initial syntactic barriers.

Given this broad question, we test here the following null hypotheses,

H04. Novices will have equal accuracy rates while programming, regardless of the
programming language used.
H05. All syntactical variations of programming language constructs (e.g., loops, con-
ditionals) will afford equal accuracy rates amongst novices.

The studies were conducted as a repeated-measures between-subjects design with
six tasks using an accuracy measurement technique called Artifact Encoding [Stefik
et al. 2011a], originally designed for analyzing a talking debugger for blind computer
programmers. To grade each experimental task, we used a simplified version of Arti-
fact Encoding [Stefik et al. 2011c].

While previous work discusses the procedure in detail, Artifact Encoding produces a
key that can be graded by a computer. These answer keys are metaphorically similar
to how an answer key for a class would be constructed; break-down the computer code
into components (e.g., did the user define a particular variable correctly?) and score
each with a code. In this study, if an answer was correct, we marked that component
with a 1. If a particular component was incorrect, we marked it with a 0. Once all
components were marked, a total and a percentage was computed for each task. So,
in effect, we computed a “percent correct” metric for each task and used these values
in our statistical models, but we did so in such a way that we could compute an inter-
rater reliability analysis. Previously published forms of artifact encoding designed for
testing auditory debuggers for the blind are far more complex [Stefik et al. 2011a].

Participants completed all six tasks using one of the programming languages de-
scribed in Table XXI. As we will demonstrate, all of the programming languages tested
here, including our own (Quorum), have syntactic issues that language designers can
choose whether or not to fix. Further, users programming in two of the programming
languages (Perl and Java) had accuracy rates so low that we could not statistically dif-
ferentiate their scores from those using our metaphorical placebo—a language where
the keywords were generated randomly from the ASCII table (Randomo). We now
briefly describe this idea, known historically in the bio-medical sciences as using a
“dummy treatment.”

4.1. Dummy Treatments: A Short History

Before we begin discussing our methodology for the last two experiments in our ar-
ticle, we feel our use of Randomo requires some historical context. Kaptchuck de-
scribes the development of randomized controlled trials in the bio-medical sciences
[Kaptchuk 1998]1. For example, the earliest known study using a dummy treatment

1Technically, Kaptchuk uses the word “sham treatment”, although we prefer the term “dummy treatment”
used by the National Health Service [House of Commons and Committee 2010]. Kaptchuk’s term “sham” was
used to describe the deception used in experiments done by Franklin and others testing medical theories
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Table XXI. Summary Table of the Programming Languages Included in Each Experiment

Language Studies Sample Size Description
Quorum 3,4 6, 12 A programming language designed using data gathered in Studies 1 and

2. Full documentation of the syntax and semantics is available online at
http://quorumlanguage.com/.

Perl 3,4 6, 13 A well-known programming language originally designed by Larry Wall.
Randomo 3,4 6, 12 A programming language based largely on the syntactical structure

of Quorum. With the exception of braces, the lexical rule for variable
names, and a few operators (e.g., addition, subtraction, multiplication,
division), many of the keywords and symbols were chosen randomly
from the ASCII table.

Java 4 12 A well-known programming language originally designed by James
Gosling at Sun Microsystems.

Ruby 4 11 A well-known programming language originally designed by Yukihiro
Matsumoto.

Python 4 12 A well-known programming language originally designed by Guido van
Rossum.

was led by Benjamin Franklin (1706-90) as part of a commission to examine the ani-
mal magnetism theory espoused by Franz Anton Mesmer (1734–1815). In these initial
experiments, participants were blindfolded so they could not detect where the “en-
ergy” Mesmer claimed to exist was directed. As is now well known, while these and
many other experiments ultimately showed Mesmer’s theory to be false, his ideas
remained tremendously popular throughout the nineteenth century. Similarly, such
dummy treatments were eventually used to discredit drugs, most famously Samuel
Hahnemann (1755–1843)’s homeopathic “remedies,” which are oddly still practiced by
the U.K.’s National Health Service [House of Commons and Committee 2010].

In computer science, we feel the situation in programming language design has un-
fortunate similarities to that of the medical sciences in the late 18th century. On the
one hand, general purpose language designers have a standard of evidence for the effi-
ciency of algorithms, and correctness, that is far beyond what was possible in the 18th
century (e.g., asymptotic analysis). On the other, when we examine the syntax and
semantics of programming languages, we are highly skeptical that the choices make
much sense to humans, especially given our results from Studies 1 and 2. Garnering a
better understanding of how humans use programming languages may require a num-
ber of research techniques to fully comprehend (e.g., randomized controlled trials with
placebo, field studies, classroom interventions, usability studies), but given the widely
acknowledged success of randomized controlled trials in other disciplines, it makes
sense to consider the impact of this level of rigor.

Given our observations, we conducted a thought experiment: what if we took the key-
word choices we ultimately found for Quorum (from Studies 1 and 2) and replaced them
with random symbols from the ASCII table? If tests with novices revealed no statis-
tically detectable differences when programming, when compared to a language with
randomly chosen keywords, then we should conclude that syntax variations amongst
languages may not matter. If we do, however, then such a language might provide a
baseline by which we can compare results from many languages. As such, we designed
Randomo by replacing keywords from Quorum with random characters, while keeping
the structure similar to allow for a comparison (e.g., if became :). A few symbols were
not randomly selected (e.g., addition, subtraction), because we assumed that language
designers with a reasonable grasp on reality would not adjust these choices.

Ultimately, our choice is a first attempt. We tried to thread the needle in finding
an appropriate choice of Placebo as best as we could. To our knowledge, however, our

in the 18th and 19th centuries [Kaptchuk 1998]. As language designers are generally not trying to deceive,
dummy treatment or placebo seems like more reasonable terminology.

ACM Transactions on Computing Education, Vol. 13, No. 4, Article 19, Publication date: November 2013.



�

�

�

�

�

�

�

�

19:26 A. Stefik et al.

experiment is the first to even attempt to use dummy treatments as part of language
design, so it may take time for our discipline to find the right balance in such treat-
ments. Our broad point here is that we encourage other education researchers to adopt
their own form of dummy treatments and to tackle the programming language problem
with the mindset of the medical sciences—randomized controlled trials with placebo.
This type of approach may give us a new way forward when investigating the long-
standing, and vexing, programming language design problem.

4.2. Methodology

As in the first part of our article, Studies 3 and 4 hold significant similarities. As
such, this section is organized as follows. First, we will describe the population we
drew participants from for both studies. Next, we will discuss our materials and tasks
broadly, then move to results for each experiment. Finally, we will present a discussion
of both studies and then a broad discussion overall, including threats to validity.

4.2.1. Participants. For our third study, we solicited 19 participants between the
months of April and July of 2011 from non-computer programming classes at Southern
Illinois University Edwardsville after appropriate Institutional Review Board ethics
reviews. Participants in all groups were equally paid $10 for their participation. Of
these individuals, one participant left in the middle of the study. Since this participant
did not complete the experiment, that individual’s data was subsequently removed.
Of the remaining 18 participants, the average age was 21.3 years, with 12 males and
6 females. All reported being native English speakers. The programming languages
tested for studies three and four are summarized in Table XXI. In the case of Study 3,
six participants were in each group.

For our fourth study, we solicited 73 new participants between the months of
September 2011 and June 2012, again from non-computer programming classes at
Southern Illinois University Edwardsville. In this case, participants were recruited
from a participant pool and were unpaid. Due to a mistake, we accidentally placed
13 individuals into the Perl group and 11 in the Ruby group. All other groups had
12 participants, which adds to 72. The final, 73rd, participant was accidentally given
the solution to task 3 instead of the task description, so we did not include that in-
dividual’s data in our analysis. Three individuals reported being non-native English
speakers and one declined to respond to this survey question. The average age for
experiment four was 20.1 years, with 48 males and 24 females.

In both experiments, we checked with participants to ensure that they had never
programmed a computer. In exit surveys, however, we noticed a handful of students
made unusual or confusing markings. For example, one student marked that they
had both never programmed and that they were currently taking our senior projects
computer science sequence (besides being impossible, we confirmed that this was
incorrect). We could have removed these students from the sample, but instead
conferred with all students individually and verbally asked each whether they had
ever programmed. All confirmed they had not. We further guarded against the effect
of experience by randomly assigning all participants to the experimental groups in
both experiments.

4.2.2. Procedure and Experimental Walkthrough. When participants began the study, they
were first greeted by a proctor and, again, assigned randomly to a group. For those
readers unfamiliar with formal controlled experiments, Vogt [2006] describes why is-
sues such as random assignment are important in significant, and easily readable, de-
tail. Participants were then seated at a computer with Windows 7 installed. Cardboard
barriers were placed between each individual. These barriers prevented people from
looking at other participants’ screens or otherwise cheating. For a participant to cheat,
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Fig. 3. This code shows one of the code samples provided to participants. The description said the following:
This code will count the number of values that are and are not divisible by c and lie between a and b. It then
compares the number of values that are and are not divisible by c and makes the greater of them available
to the user.

they would have had to physically stand up and walk to a neighbor’s computer to do so.
As we monitored participants and made reasonable restrictions to prevent cheating,
we conclude that each participant worked independently and without assistance from
their peers or the Internet.

Each experimental session lasted approximately two hours and followed a standard
checklist of procedures. A complete replication package, including all tasks, procedure
checklists, task solutions, and proctor scripts is available from the authors on request.
Before beginning, participants were read a script describing what they will be doing in
the experiment. Once complete, participants were given a code sample worksheet for
the particular language group they were in (again as summarized in Table XXI). See
Figure 3 for one of the examples on the reference sheet given to participants.

The general idea of our controlled experiment is to give novice users code samples
similarly to if a participant was learning to program from home on their own. As such,
we intentionally did not teach participants what each line of syntax did in the com-
puter programs. Instead, participants had a standardized set of examples that were
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Table XXII.

A table giving the programming concepts highlighted in each task. The amount of time available to complete
a task and whether a reference sheet (during) and solution (after) were available for inspection is listed.
Task Study 3 Times Study 4 Times Reference Concepts Tested
Task 1 7 minutes 6 minutes Yes conditional statements, strings, and variables
Task 2 7 minutes 6 minutes Yes loops, variables
Task 3 7 minutes 6 minutes Yes functions, parameters, return values
Task 4 10 minutes 6 minutes No loops, variables
Task 5 10 minutes 6 minutes No functions, parameters
Task 6 10 minutes 6 minutes No nested conditional statements, variables

identical across groups (with appropriate syntax), which they used to derive the mean-
ing of the computer code on their own. To be clear, we are not arguing that this type of
study is exactly like learning to program at home, but we think this serves as a rea-
sonable metaphor. With that said, we think that giving novices examples with some
written explanation, and having them derive new solutions, is relatively similar to
what students actually do when learning to program. For instance, many U.S. high
schools do not even offer computer science courses, so independent study like this (e.g.,
look at examples and try to write your own), is sometimes the only option students
have.

Participants completed a total of six experimental tasks (see Table XXII). In the
first three, participants were allowed to reference and use the code samples shown in
Figure 3. Seven minutes were allotted to complete each of the first three tasks. Once
time was up, participants were given an answer key. This somewhat mimics the idea of
finding a working example and then creating a new one on your own. To be clear, these
are not typography tasks. Students are not copying code; they are using examples to
write new code to a specification that we give them. For the final three tasks, use of the
code samples was not allowed, no solutions were given, and ten minutes was allotted
for each task. In experiment 3, however, we observed that participants generally did
not need the full seven or ten minutes to complete the tasks. As such, in experiment 4,
we allotted only six minutes for each task.

4.2.3. Materials and Tasks. For each experimental task, participants were given identi-
cal English descriptions of the code they were asked to write (Quorum, Perl, Randomo,
Java, Python, or Ruby). For task 1, the description read as follows.

“Using the code sample given to you, try to write code that defines a variable
x that stores real values and is set to 175.3. The code should also define a
variable y that stores a string of characters and saves the word false in it.
The code should then check whether x is larger than 100. If so, y should save
the word true. Otherwise, y should save the words still false. Write your code
in the text editor open on the PC in front of you.”

The concepts participants had to attempt to program are summarized in Table XXII,
all of which focused on the types of core concepts students might see in an introductory
course. In other words, we tested features such as loops, conditionals, and function
usage, but not more esoteric features such as regular expressions or the use of closures.

We also want to mention that there was a typo in experiment 4’s code sample mate-
rials. Specifically, we inadvertently left an additional phrase for i = i + 1 in the code
sample document for the language Ruby, inside of the loop. Figure 3 is shown without
this typo. This typo did not exist in the answer keys, and as such, we think users in
the Ruby group were not at a significant disadvantage. However, to further counteract
for this mistake, we did not deduct points from an individual if this line was added
to a participant’s answer. As such, while the typo may have unintentionally impacted
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Fig. 4. A summary of the accuracy scores by language and task for experiments 3 (left) and 4 (right). 1.0
means 100% correct, whereas 0.0 means 0% correct.

Ruby users, we consider it unlikely to have made an impact in either the metrics we
report or our statistical conclusions.

4.3. Study 3 Results

To ensure our grading could be replicated by other researchers, we first verified that
independent raters of the data would give approximately the same result. We did this
using a standard inter-rater reliability test called a Kappa analysis (see e.g., Hubert
[1977]). Two researchers first trained on data not used in the study and then inde-
pendently coded approximately 20% of the actual data. A Kappa statistic of 0.80 (raw
agreement 91.0%) was found, a result which is typically interpreted as highly reliable.
Researchers trained in the grading technique proceeded to code the remaining 80% of
the data.

We then proceeded to analyze the data using a standard repeated-measures ANOVA
test, with corresponding post-hoc Tukey tests and partial-eta squared values using
the statistical package SPSS. For those unfamiliar with this procedure, one must
first verify that the assumptions of the statistical test are not violated. To do so, we
ran Mauchly’s test for sphericity, χ2(14) = 12.071, p = .608. As the result was non-
significant, it implies that the sphericity assumption has not been violated. As such,
the standard Greenhouse-Geisser correction was unnecessary for our data.

Next, we conducted a test for within-subjects effects to see if learning played a role
in our experiment. Results show that total cross-language averages for task 1 (M =
.412, SD = .237) raised slightly by the end of the experiment (M = .552, SD = .224),
F(5, 75) = 3.22, p = .011, η2

p = .177). This is not surprising. We would expect partici-
pants to improve slightly as they become familiar with either the language or protocol,
although it is interesting that scores continued to rise despite the lack of a reference
sheet in tasks 4–6. The learning effect interaction with language was non-significant,
F(10, 75) = .735, p = .689, η2

p = .089, implying there was no obvious interaction be-
tween task order and language. A summary of the accuracy data for each task is shown
in Figure 4.

However, the test most critical to our hypothesis is the test of between-subjects
effects: did differences in the languages themselves matter? This test shows that
differences between the programming languages were both significant and very
large, F(2, 15) = 7.759, p = .005, η2

p = .508. Further, post-hoc Tukey HSD tests of
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the between-subjects effect indicated a surprising result. While users of Quorum
(Average M = .628, SD = .198) were able to program statistically significantly more
accurately than users of Perl (Average M = .432, SD = .179), p = .047, and users
of Randomo (Average M = .341, SD = .173), p = .004, Perl users were not able to
program significantly more accurately than Randomo users, p = .458. We found this
surprising given that Perl has a relatively C-like syntax, a style that has been copied
for decades and is used worldwide in many popular languages. Before running our
study, we had assumed that, at least for simple constructs such as loops and condi-
tionals, that any language with C-style syntax would at least afford accuracy rates
higher than a placebo. However, as this and the next experiment shows, this was not
the case.

4.4. Study 4 Results

In Study four, we conducted exactly the same analysis we did previously, but on a
larger sample with six programming languages. First, we again considered the issue
of inter-rater reliability, this time with a Kappa score of 0.84 (raw agreement 92.0%).
As before, this value indicates that independent raters have high agreement in cod-
ing the results. We think it is plausible that Kappa scores went up slightly between
experiments 3 and 4 due to minor refinements in our grading protocol.

Unlike the pilot data, results from experiment 4 showed a significant Mauchly’s
test for sphericity, χ2(14) = 31.454, p = .005. To account for this, we used the
Greenhouse-Geisser correction when reporting our ANOVA results. Given this cor-
rection, we conducted a within-subjects test on the main effect of tasks and the
task-by-language interaction. Like before, the within-subjects effect was significant,
F(4.20, 276.96) = 29.371, p < .001, η2

p = .308), now with a higher partial-eta compared
to the pilot (from .177 to .308). Interestingly, the task-by-language interaction was also
significant, F(20.98, 276.96) = 1.64, p = .041, η2

p = .110). This latter result might seem
contradictory, but the partial-eta scores for both effects are relatively similar, imply-
ing the observations were similar in both cases. We think a reasonable interpretation
of this result is that all languages experienced some change in scores from beginning
to end, as we would expect, and that programming language syntax may have had a
small impact on the observed increase in scores over the tasks.

Finally, we again tested the between-subjects effect. In this case, we confirmed that
the overall result does replicate on a larger sample—initial accuracy rates of novices
did, in fact, vary by programming language, F(5, 66) = 4.889, p = .001, η2

p = .270. In
this case, the reader might consider the lower partial-eta to indicate a lack of repli-
cation, but this is incorrect. The partial-eta was lower because several of the newly
added languages approximately matched each other in performance. In other words,
this is what we would expect given additional languages with similar accuracy rates.

In terms of our hypotheses, the between-subjects effects indicates we should reject
H4. In other words, our result here shows clear evidence that syntax does influence
initial novice accuracy, a claim we can make with high statistical confidence. However,
we want to point out one aspect of our larger experiment that only partially replicated.
To do so, we present the overall scores for each language in Figure 4. Notice that
the results for the Randomo programming language (our metaphorical placebo) and
Perl match very closely to the previous work (near-exact replication), but that Quorum
users scored lower overall compared to the pilot (a partial-non-replication). We confirm
this observation using post-hoc Tukey tests, which reveal that languages essentially
fall into one of two camps: (1) some languages clearly had higher scores than placebo
(Quorum (p = .033), Python (p = .011), and Ruby (p = .003)), and (2) for others, there
was insufficient evidence to conclude that novices using those languages performed
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Table XXIII.

A table showing the cross-task average and standard deviation for each language and
the Tukey HSD comparisons. Statistically significant differences are in bold.

Tukey HSD
Mean Std. Dev. Python Quorum Perl Java Randomo

Ruby .558 .243 0.994 0.940 0.165 0.044 0.003
Python .528 .246 0.999 0.412 0.141 0.011
Quorum .508 .232 0.655 0.292 0.033
Perl .429 .189 0.987 0.573
Java .396 .194 0.922
Randomo .344 .207

more accurately than placebo (Java (p = .922), Perl (p = .573)). Additionally, with one
exception, no other languages showed significant differences between the others. The
exception is that Ruby users had significantly higher accuracy rates than users in
Java (p = .044). A table with all Tukey HSD results, mean, and standard deviations
overall, is shown in Table XXIII. Our analysis of H5 requires some context and will be
discussed in more detail in the discussion.

4.5. Discussion

We have presented data regarding programming tasks completed by novice computer
programmers. We think that a number of points stand out as important with these
studies, the most critical of which are as follows: (1) syntax does matter to novices and
accuracy rates vary by language, and (2) careful observational data can help us find
clues as to which tokens can be altered, modified, added, or removed to help novices
use or understand programming languages. An alternative view of point number 2 is
that by analyzing languages on a token-by-token basis, instructors may garner clues
as to which aspects of a programming language might initially be related to student
mistakes.

Experiments 3 and 4 show clear evidence that syntax design is not as trivial as some
believe. Both our surveys and accuracy data lead us to the same conclusion—some lan-
guages are perceived as easier to understand and some really are easier for novices to
use. Interestingly, these results strongly support existing work in the literature, espe-
cially by Denny et al., using a completely different research methodology [Denny et al.
2011]. Further, our results also provide support for Denny et al.’s broad conclusion
that not all syntax errors are created equal [Denny et al. 2012], a conclusion that re-
sembles our H05 (All syntactical variations of programming language constructs (e.g.,
loops, conditionals) will afford equal accuracy rates amongst novices), which we will
now discuss.

To get a better handle on whether we should reject H05, Figure 5 presents the token
accuracy map for task 6 with novices using Quorum. On the left of this figure is a
set of syntactic choices in Quorum 1.0 (in shaded boxes), followed by two numbers.
The number on the left for each shaded box indicates the fraction of participants
that correctly placed that token in experiment 3. On the right is the same value for
experiment 4. As can be observed, different tokens have wildly different accuracy
rates, an observation that holds for all of the languages—H05 should very obviously be
rejected. For those who would like to see a statistically rigorous test here, the reader
should keep in mind that we would only need show two tokens that have different
rates. In other words, even a cursory glance of the Token Accuracy Map confirms
that this is true. Much more interesting is which tokens were helpful or harmful for
novices.

As one of our goals in running these experiments was to find problems in version
1.0 of the Quorum programming language, we were not disappointed. We found two
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Fig. 5. A summary of the Token Accuracy Map (TAM) for Quorum 1.0, Task 6, with trouble spots in the
language circled. The right-hand side shows the modified syntax for Quorum 1.7. For each number next to a
highlighted token (e.g., then, integer), is two numbers. The left number is the proportion of individuals that
correctly placed that token in the example in experiment 3, whereas the right number shows experiment 4.

areas of Quorum syntax that our study indicated needed improvement: the (1) design
of conditional statements, and (2) the type system. For the first, upon investigating
conditional statements in the various languages, it appeared that Ruby was the most
successful, we suspect because the syntax was rather terse. In Quorum, we found es-
pecially poor accuracy rates for the words end and then. More explicitly, in experiment
4, only one participant correctly placed the inner end tokens. We were surprised by
this result, as many academics describe conditionals as “if then” statements. However,
the TAM shows only up to 67% accuracy in the best case, with 8% in the then after the
first else for experiment 4 (see Figure 5).

Another result with conditionals we did not expect is the accuracy rate of the double
equals sign in conditionals. Our survey data suggested a single equal sign might be
more intuitive, so we tried this in Quorum 1.0. While we did this, some on our team
(many more than the two authors of this article) considered this choice to be risky. On
the one hand, some thought that this would cause issues with novice understanding of
assignment statements, while others thought it would help across the board. Our re-
sults offer a rather firm conclusion to this question—the single equals sign is a superior
choice for novices, a claim we can test by comparing == to our dummy operator in Ran-
domo, the Bang (!). Results from Task 6 (the only task where this was tested), showed
a score of 0.67 for = in Quorum (67% of novices used this symbol correctly). When
compared to ==, the scores were 0 (Perl), 0 (Java), 0.08 (Python), 0 (Ruby) and 0.08
(Randomo). In other words, the character we randomly chose (!) to represent equality
was used correctly by one participant, while the == was used correctly by only 1 out
of 48 students in the other four languages. Moreover, 100% of novices used the assign-
ment operator correctly in task 6 for Quorum, where the overloading could have been
a problem, but ultimately was not. We understand all too well why many language
designers historically made the choice of ==, but the impact on novices is clear.

Our results may also have implications for instructors and students in regards to
the use of static type systems, because of the observed difficulty novices have with
static type annotations. Some context, however, is critical here, as the usability of type
systems has been studied carefully in the literature as of late. For example, the recent
literature has largely answered the question of whether static or dynamic typing is
beneficial to experienced users. As is now known, under reasonable experimental
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Fig. 6. Token Accuracy Map for Ruby, Task 4. Notice that even with more modern languages like Ruby,
novices have significant trouble with for loop syntax. In this case, novices consistently missed the words
for, in, and the .. operator. This follows trends in Quorum, where simply adding extra words to make the
syntax more English-like (e.g., in, then) does not necessarily benefit novices.

conditions, static typing helps programmers [Hanenberg 2010a; Kleinschmager et al.
2012; Mayer et al. 2012]. While this result appears to be the growing scientific consen-
sus for more experienced users, novices only placed type annotations approximately
half the time in our study, across tasks and languages. From a language design
perspective, computer code inside of a method can probably remove type annotations
under many conditions while still maintaining static typing. However, for method
declarations, there may be an unresolvable trade-off between static and dynamically
typed languages. The tradeoff is that novices using type annotations may have slightly
greater difficulty. Given time, the available evidence tells us that overcoming this
initial barrier really is worth the effort and this leads us to an interesting language
design opportunity for Quorum. Specifically, in Quorum 1.7, we have derived a
type inference system that removes most type annotations inside of methods, keeps
annotations in method declarations, and keeps static type checking itself. More study
is needed, but compromises like this may afford ease of use for all.

We suspect that some might believe our results imply dynamic typing is better for
novices, but we find this explanation implausible. First, we already know that static
typing affords faster programming later in the educational pipeline [Hanenberg 2010a;
Kleinschmager et al. 2012; Mayer et al. 2012]. Second, the syntactic benefit of remov-
ing the type annotations is relatively small in our studies; a total of only one point in
task 6 and slightly more in other tasks. Third, not all dynamically typed languages
agree on the syntax and some do a better job than others. For example, the seemingly
trivial addition of the $ operator in Perl led to accuracy rates for this character of be-
tween 0 and 85%. Other choices in Perl had lower rates still. For example, the $ [0]
operators for parameters received a score of 0% in study 3 and only 8% in study 4.
Languages such as Python and Ruby appear to handle dynamic typing syntax more
elegantly by not including an annotation at all. Thus, claiming that dynamic typing is
better for novices is incorrect without the proper context.

While we have criticized Quorum and Perl, no language made excellent choices
across the board. While a complete analysis of all tasks is beyond the scope of this
paper, consider task 4 for the Ruby programming language, Figure 6. While Ruby has
made some excellent decisions, especially in regards to its conditional syntax, the for
construct is not one of the language’s bright spots. Novices only correctly used the word
for approximately 18% of the time and the rest of the syntax for this construct did not
do much better. Contrast this result with the loop syntax for Quorum, where novices in
experiment 4 used the word repeat correctly 58% of the time (85% in experiment 3), an
increase of 322%. Succinctly, novices can use statements like repeat 10 times (Quo-
rum’s syntax) more accurately than traditional C-style looping syntax in Java, Ruby,
Python, or others. As one final point on these TAM’s, notice that there are occasional
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“blank” elements and that these blanks still have accuracy values. These positions are
an artifact of the coding system, which allow us to make comparisons between lan-
guages. For example, Java requires a semicolon at the end of a line, but Ruby does not.
While this means that most students cannot possibly make this error, this point is only
given if the user did not make another mistake on a particular line. For example, if a
novice left a line blank, or left out part of a line, they do not receive a point. As Denny
shows, semicolons are a relatively trivial issue for novices anyway [Denny et al. 2012],
which our data supports in a very different way.

5. GENERAL DISCUSSION AND THREATS TO VALIDITY

We have presented two very different views toward analyzing the impact of program-
ming language on novices. In our first two studies, we investigate the types of word
choices and symbols that might be easy to understand. In the second two, we analyzed
the accuracy rates of novices while completing small programming tasks. In this short
section, we discuss our overall results and threats to validity.

Our first two studies were designed to give specific clues on the words and symbols
that might make sense to novices. We conducted these because many language de-
signers disagree and instructors could probably use some guidance as to the syntactic
tradeoffs in language design with beginners. Thus, our first step was to do the obvi-
ous: ask hundreds of novices what they think. Now, the threats here are clear; novices
may not have understood the concepts, our descriptions may be accidentally biased,
our surveys may have no impact on actual performance in the field, and surveys alone
are hardly representative of programming language design itself. On the other hand,
while these threats are certainly plausible, they also miss the point—our surveys were
actually helpful; Quorum improved significantly because of them and this is confirmed
in our accuracy tests. For example, the high novice rating of the word repeat prompted
us to come up with syntax that used this word. This loop syntax was far more success-
ful than more traditional for loops in any language we tested. Similarly, the single
equals sign was preferred by novices, prompting us to use it. Ironically, the double
equals did so poorly that our randomly chosen operator, bang (!) did just as well (if
not better). Using surveys was a calculated gamble, but they provided an important
check and balance in our design ideas. In short, academics should be cautious not to
overstate the importance of surveys, but they should be equally cautious of cynicism
toward a technique that is used widely in scientific literature.

Surveys aside, a number of additional threats to validity come up for our second set
of studies. Importantly we must acknowledge that computer programming is a com-
plex task. While our tasks are representative of the types of tasks a novice at the very
beginning of their career might be able to accomplish, they are also simple and not
representative of what professionals do in the field or perhaps even what students do
in a college level course. It remains unclear how syntactic changes impact novices in
the field, especially given that novices in the classroom are taught using a variety of
pedagogical styles (e.g., scaffolded instruction, studio based learning). Like any exper-
iment, we have tried to balance internal and external validity. As experiments become
more tightly controlled, they tend to become less representative of work in practice
and our studies are no exception. On the other hand, there is an astonishingly small
number of archival quality randomized controlled trials on language design in the aca-
demic literature. Our randomized trials appear to be largely replicable, but we think
that raising our sample size further, changing our examples, examining students at
other points in the academic pipeline, and testing new features (e.g., closures, prefix
notation, enum syntax, other loop constructs, switch statements) in a controlled and
systematic way could be of great benefit to our work and the literature. Finally, while
the use of a placebo programming language is acceptable for a short and carefully
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controlled experiment, we believe there are ethical issues with teaching Randomo in
the classroom, even if the results would be, admittedly, rather fascinating.

6. SUMMARY AND FUTURE WORK

Analyzing how humans use and interact with computer programming languages is
a difficult research problem. Clearly, a great number of factors can influence human
performance (e.g., support tools, pedagogical strategies) and different groups likely
have different needs (e.g., students, professionals). Our studies here provide what may
be the first randomized controlled trials with placebo in this design space, which were
developed as part of a long-term investigation into the multiple languages problem.
Given the myriad of complex statistics throughout this text, we want to offer a concise
take-home message, guided from observations about our data. Overall, our findings
include the following.

(1) Perceived intuitiveness varies across word choices and language constructs. While
programmers become familiar with the somewhat esoteric terminology used in pro-
gramming languages, non-programmers appear to rate higher those words that are
both common in English and literal (e.g., for the concept of iteration, words such
as repeat instead of for).

(2) Perceived intuitiveness varies between programmers and non-programmers. When
measuring intuitiveness scores of those with self-reported years of C++ experi-
ence, individuals rated C++ constructs an average of about half a point higher per
year on an 11-point Likert scale. Given this, teachers, users, and designers of pro-
gramming languages, especially those with significant experience, would be wise
to check their assumptions before claiming a design is intuitive.

(3) Perceived intuitiveness varies across languages as a whole. When aggregating
words and phrases across languages, some languages are considered more intuitive
than others, by both programmers and non-programmers. Quorum is perceived as
being particularly intuitive.

(4) Artifact Encoding and Token Accuracy Maps (TAMs) provide us a methodology for
measuring novice programming accuracy. These techniques allow us to gather in-
formation related to accuracy both in aggregate (between languages) and in the
context of language constructs (within languages).

(5) Some programming languages may not afford accuracy rates much higher than
placebo. We document evidence that some languages (Ruby, Python, and Quorum)
do afford accuracy rates higher than placebo, but found insufficient evidence to
determine that this is the case for either Java or Perl.

(6) Novices may have initial difficulty with static type annotations. Given that previ-
ous work has shown benefits of static typing [Hanenberg 2010a; Kleinschmager
et al. 2012; Mayer et al. 2012], this result may imply that type systems only grant
benefits once individuals garner experience.

(7) Novice accuracy varies across language constructs. While our results are prelimi-
nary, Token Accuracy Maps suggest the following.
(a) Looping constructs that use intuitive word choices afford higher accuracy (e.g.,

repeat 10 times).
(b) If statements that remove parentheses, braces, and use a single equal sign

afford higher accuracy.
(c) Type annotations and semicolons appear to cause minor deficits in novice

accuracy (e.g., a = 5 has higher accuracy than phrases like int a = 5;).
Languages with dynamic typing that include a $ symbol (e.g., $a = 5;) show
slightly lower accuracy rates across the construct.
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(d) Quorum is regularly changed to conform to the best available evidence regard-
ing syntactic choices, including the recommendations found in this article. All
else being equal, new language designers that want their language to be easy
to understand should consider building on Quorum’s syntax as a foundation.

While our studies provide new information into how students interpret and use an
array of alternative programming language designs, they offer but a glimmer toward
understanding the broad multiple languages problem. If the research community is
serious about obtaining a deeper understanding of how humans use programming lan-
guages, significantly more evidence from a broad community will be required. For ex-
ample, the major conferences on programming language design make a vast number
of academic claims regarding language design, many of which have not been evalu-
ated with human users. For future work, we urge the research community to take a
critical eye to the multiple languages problem and the impact it has on our world.
Claims made by language designers should not simply be accepted, but subjected to
rigorous experiment, formal analysis, and most crucially, with full availability of raw
anonymized data and experimental protocols so that the work can be replicated by
independent research groups.

7. CONCLUSION

In this article, we conducted four empirical studies. The contribution of this work is a
rigorous empirical approach to analyzing the syntax of programming languages. Re-
sults show that many aspects of traditional C-style syntax, while it has influenced a
generation of programmers, exhibits problems in terms of usability for novices. Alter-
native syntactic constructs should be considered and tested. In future work, we plan to
continue our investigation into programming languages with a family of randomized
controlled trials, including further tests of syntactic designs (e.g., exceptions, func-
tions, generics, regular expressions) and tests going beyond syntactic representations
(e.g., the use of type systems, parallelism, closures, the design of standard libraries).
Our goal is to neutrally investigate the alternatives and to iteratively refine Quorum
according to the best available evidence. Thus, we hope that Quorum will serve as a
testbed for other researchers to compare against for analyzing alternatives. Finally,
barring more, or better, empirical evidence, designers creating new programming lan-
guages should consider building on Quorum’s syntax as a foundation.
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