T1S=1090©

TESSELLATED INTELLIGENCE SYSTEM

REFERENCE MANUAL

We are off st in shock here, from Uncle
a(eh asfy WM@ We wait on word from H\a

send SOme ’olomm; wl\w , ga’m A\am

f::[‘b w;i; H\a;:;hm ﬂu’c Was Set up on tus
ot what hg was, Jbi “‘JL N . uF : ﬁ?“m

| |H\| e o
LO Someone wus gom; 1171‘;\19“’:, “MV@ me

'A’W\‘t Dorisr.

OVERVIEW

The Tessellated Intelligence System is a massively parallel computer architecture comprised of non-uniformly
interconnected heterogeneous nodes. The Tessellated Intelligence System is ideal for applications requiring complex
data stream processing, such as automated financial trading, bulk data collection, and civilian behavioral analysis.

Note: Notes like this one will appear in this manual to indicate scenarios requiring special attention and to refer
to other documents that contain more information on a topic.

SYSTEM ARCHITECTURE AND ORGANIZATION

The Tessellated Intelligence System consists of a large number of independent nodes connected on a local basis. (Refer
to the model-specific manual to find the precise node population counts present on a particular device.) Node types
can be broadly classified as processing or storage, with several variants within each category.

Generally, nodes are connected to up to four neighbors via ports. Ports enable lightweight message-passing
communication between nodes. Communication over ports is coordinated by allowing either node to issue a read or
write to a port and blocking until the request is filled by the corresponding node.

Note: If two nodes issue the same communication command (read or write) on the connection between them,
the nodes will deadlock and a hardware fault will occur. Refer to the separate document “Tessellated Intelligence
System Best Practices - Patterns of Node Communication” for details on how to use ports effectively and safely.

Note: If a node issues a communication command and it is never fulfilled by the corresponding node, the node
will deadlock and a hardware fault will occur. (Exceptions to this rule exist; refer to the documentation of specific
node types for details.) Refer to the separate document “Tessellated Intelligence System Best Practices - Patterns
of Node Communication” for details on how to use ports effectively and safely.

Note: This document does not describe timing or throughput for node communication operations or instructions,
as these values vary by model and hardware revision. Refer to the model-specific manual for a detailed
description of performance characteristics of a particular device.

NODE TYPE T20 - RESERVED

Note: This node type identifier is restricted to specific models of the Tessellated Intelligence System and will not
be described in this document. Documentation for node type T2o0 is distributed only with systems containing this
node type. Unauthorized requests for copies of documentation describing this node are reported to the state
security bureau, as required by law. 777

NODE TYPE T21 - BASIC EXECUTION NODE

1. Architecture

The Basic Execution Node is responsible for coordinating the behavior of the Tessellated Intelligence System.
Processing can occur within the Basic Execution Node, or can be delegated to specialized processing and storage
nodes.

The Basic Execution Node executes a program specified in the Basic Execution Node Instruction Set. A Basic
Execution Node program specifies computational and communication operations to perform. Operations are
performed sequentially, beginning with the first instruction in the program. Afterexecuting the last instructionof thé
program, execution automatically continues to the first instruction: This behavior supports the common usage of Basic
Execution Nodes, in which programs are written to operate in a continuous loop.

In addition to the communication ports common to all Tessellated Intelligence System nodes, the Basic Execution
Node contains a number of registers that are used in the execution of its program. No additional memory is available
on the Basic Execution Node; if additional storage is required, the node should coordinate with another Basic
Execution Node or a storage node.

All registers store integer values between -999 and 999 (inclusive). The representation of register values is
implementation-defined, and knowledge of the representation is not required to program the Basic Execution Node.

1-1. ACC
Type: Internal

Description: ACC is the primary storage register for a Basic Execution Node. ACC is used as the implicit source or
destination operand of many instructions, including arithmetic and conditional instructions.

1-2. BAK .
Type: Internal (non-addressable)

Description: BAK is temporary storage for values in ACC. It is only accessible through the SAV and SWP
instructions, and cannot be read or written directly.

1-3. NIL
Type: Internal (special)

Description: Reading NIL produces the value zero. Writing to NIL has no effect. NIL can be used as a destination
operand to execute an instruction for its side effects only, discarding the result.

1-4. LEFT, RIGHT, UP, DOWN
Type: Port

Description: The four communication registers UP, DOWN, LEFT, and RIGHT correspond to the four ports that
all Basic Execution Nodes use to communicate with topologically adjacent nodes. Some ports will be disconnected on
certain nodes within the hardware, and will block indefinitely if a READ or WRITE command is issued. Refer to the
interconnection diagram for the node to determine which ports are available for use.

1-5. ANY
Type: Port (pseudo-port)

Description: When ANY is used as the source of an instruction, the instruction will read the first value that becomes
available on any port. When ANY is used as the destination of an instruction, the result of the instruction will be
sent to the first node that reads from any port on this node.

1-6. LAST
Type: Port (pseudo-port)

Description: LAST refers to the port last read or written using the ANY pseudo-port. It otherwise behaves
identically to explicitly specifying a port. Reading from or writing to LAST before it has been set by a successful read
or write using the ANY pseudo-port will result in implementation-defined behavior. Refer to the separate document
“Tessellated Intelligence System Best Practices - Patterns of Node Communication” for sample code demonstrating
the use of the LAST pseudo-port.

2. Instruction Set

<SRC> and <DST> instruction parameters may specify a port or internal register. Any use of a port will block until
the corresponding node connected to that port completes the communication by reading or writing a value.
Additionally, a <SRC> parameter may be a literal integer value between -999 and 999 (inclusive).

BAK cannot be specified as a <SRC> or <DST> operand. The value of BAK is only accessible through special
instructions SAV and SWP.

<LABEL> parameters are arbitrary textual names used to specify jump targets within the program.
2-1. Comments
Syntax: # COMMENT TEXT

Description: All text including and after the comment symbol (#) is ignored.

Note: Text placed after two comment symbols (##) will be used as the title of the program in which it occurs,
and is displayed in the debugger to make browsing programs easier.

2-2. Labels
Syntax: <LABEL>:

Description: Labels are used to identify targets for jump instructions. When used as a jump target, the instruction
following the label will be executed next.

Examples:

LOOP: This label is on a line by itself.

L: MOV 8, ACC This label is on a line with another instruction
2-3. NOP
Syntax: NOP

Equivalent syntax: ADD NIL

Description: NOP is a pseudo-instruction that has no effect on the node’s internal state or communication ports.
NOP is automatically converted to the instruction ADD NIL.

2-4. MOV

Syntax: MOV <SRC>, <DST>

Description: <SRC=> is read and the resulting value is written to <DST>.
Examples:

MOV 8, ACC The literal value 8 is written to the ACC register.
MOV LEFT, RIGHT A value is read from the LEFT port, and then written to RIGHT.
MOV UP, NIL A value is read from the UP port and then discarded.

2-5. SWP

Syntax: SWP

Description: The values of ACC and BAK are exchanged.

2-6. SAV

Syntax: SAV

Description: The value of ACC is written to BAK.

2-7. ADD

Syntax: ADD <SRC>

Description: The value of <SRC> is added to the value of ACC and the result is stored to ACC.

Examples:
ADD 16 The literal value 16 is added to the value in the ACC register.
ADD LEFT A value is read from the LEFT port, and then added to ACC.
2-8. SUB

Syntax: SUB <SRC>

Description: The value of <SRC> is subtracted from the value of ACC and the result is stored to ACC.

Examples:
SUB 16 The literal value 16 is subtracted from the value in the ACC register.
SUB LEFT A value is read from the LEFT port, and then subtracted from ACC.
2-9. NEG
Syntax: NEG

Description: The value of ACC is arithmetically negated. A value of zero remains the same.

2-10. JMP

Syntax: JMP <LABEL>

Description: Transfer execution unconditionally. The instruction after the label <LABEL> will be executed next.
2-1. JEZ

Syntax: JEZ <LABEL>

Description: Transfer execution conditionally. The instruction after the label <LABEL> will be executed next if the
value of ACC is zero.

2-12. JNZ
Syntax: JNZ <LABEL>

Description: Transfer execution conditionally. The instruction after the label <LABEL> will be executed next if the
value of ACC is not zero.

2-13. JGZ
Syntax: JGZ <LABEL>

Description: Transfer execution conditionally. The instruction after the label <LABEL> will be executed next if the
value of ACC is positive (greater than zero).

2-14. JLZ
Syntax: JLZ <LABEL>

Description: Transfer execution conditionally. The instruction after the label <LABEL> will be executed next if the
value of ACC is negative (less than zero).

2-15. JRO
Syntax: JRO <SRC>

Description: Transfer execution unconditionally. The instruction at the offset specified by <SRC> relative to the
current instruction will be executed next.

Examples:
JRO O This instruction will be executed next, effectively halting execution.
JRO -1 The previous instruction will be executed next.
JRO 2 The next instruction will be skipped, executing the instruction following it.

JRO ACC The next instruction to execute will be determined by the value in ACC.

3. Example Programs

The following sample program reads a sequence of values from the LEFT port, doubling each value read and writing
that to the RIGHT port. Because of the automatic looping behavior of the Basic Execution Node, it continues to the
first instruction after executing the last instruction.

MOV LEFT, ACC Read a value from the LEFT port into the ACC register.
ADD ACC Add the value in ACC to itself, doubling it. A
MOV ACC, RIGHT Write the value in the ACC register to the RIGHT port.

The following sample program reads a sequence of values from the UP port, writing positive values to the RIGHT
port and negative values to the LEFT port. Zero values are discarded.

START:
MOV UP, ACC Read a value from the UP port into the ACC register.
JGZ POSITIVE If the value in ACC is greater than zero, jump to “POSITIVE”.
JLZ NEGATIVE If the value in ACC is less than zero, jump to “NEGATIVE”.
JMP START The value was neither positive nor negative, so jump to “START”.
POSITIVE:
MOV ACC, RIGHT Write the value in the ACC register to the RIGHT port.
JMP START Jump to “START™.
NEGATIVE:
MOV ACC, LEFT Write the value in the ACC register to the LEFT port.

JMP START Jump to “START™.

NODE TYPE T30 - STACK MEMORY NODE

1. Architecture

The Stack Memory Node enables read/write access to a large number of values according to a simple stack-based
communication protocol. (Refer to the model-specific manual to find the capacity of the Stack Memory Nodes on a
particular device.)

2. Ccommunication Protocol

All interaction with the Stack Memory Node is performed through ports. Writing to the Stack Memory Node adds
the value to the top of the stack. If the stack is full, the write will block until space becomes available. Reading from
the Stack Memory Node removes the top value from the stack and produces that value. If the stack is empty, the read
will block until a value is available.

Stack Memory Nodes are typically connected to multiple other nodes, and can be used by any connected node.
Simultaneous reads and writes to a Stack Memory Node resolve in an undefined order, but each individual
communication will behave according to the described communication protocol. For more information on using
storage nodes from multiple nodes effectively and predictably, refer to the separate document “Tessellated Intelligence
System Best Practices - Patterns of Node Communication”.

NODE TYPE T31 - RANDOM ACCESS MEMORY NODE

Note: The Random Access Memory Node is not yet available in standard Tessellated Intelligence System
devices. Emulators and prototype hardware are available to interested users. The specification and behavior is
not yet finalized and therefore is omitted from this document.

EMBEDDED INTERACTIVE DEBUGGER

1. Keyboard shortcuts

The interactive debugger contains the following keyboard shortcuts:

Control-Z: Undo last change

Control-Y: Redo last change

Control-X: Cut selected text to clipboard

Control-C: Copy selected text to clipboard

Control-V: Paste clipboard text

Control-Arrow: Navigate to the adjacent execution node
F1: View instruction set quick reference

F2: View antitamper certification status ? 7

Fs: Begin running the current program

F6: Step or pause the current program

2. Breakpoints

To set a breakpoint, place an exclamation mark (!) at the beginning of a line. When a breakpoint is set, the program
will be paused before that line is executed, allowing you to easily debug code that would be too tedious to step
through one instruction at a time.

MOV LEFT, ACC
IADD ACC The program will be paused before this instruction is executed.

MOV ACC, DOWN

VISUALIZATION MODULE

1. Visualization Module Usage

The TIS-100 contains a visualization module that allows programs to programmatically create and display images. The
module contents can be modified by sending command sequences, which consist of the starting X coordinate, the
starting Y coordinate, one or more color values, and a terminating negative value (often -1). The'coordinate system
starts at (o, 0), which is located in the top-eft of the display area.

The visualization module supports the following colors:

o: Black

1: Dark grey

2: Bright grey

3: White

4:Red

2. Visualization Module Resolution

The standard TIS-100 visualization module is gowcharactersswiderand i8 characters tall!

The “image console sandbox™ contains a larger visualization module that is 36 characters wide and 22 characters tall.

2. Example Command Sequences

0,0,3,-1 Draw a single white pixel in the top-left corner of the module’s display.
0,0,4,4,4,4,4,-1 Draw a horizontal red line in the top-left corner of the module’s display.

